Space tourism is going to create a lot of jobs — but who's going to take on preparing the workforce? Image via Getty Images

Throughout history, humans have always been fascinated in exploring and traveling around the world, taking them to many exotic places far and away. On the same token, ever since the dimension of space travel has been inaugurated with multiple private companies launching rockets into space, it has become an agenda to make space travel public and accessible to all. We believe that space travel is the next frontier for tourism just like for our forefathers world travel to faraway places was the next frontier, for recreational and adventure purposes.

In a world racing on technology, we can picture flying cars, invisible doors, and international cuisine in space. With this rapid expansion of the land, the idea of space tourism has stirred the space industry to think about running businesses, start trade, and set up universalization beyond the ring of the earth. It is no longer science fiction but our immediate future. However, the true question remains. Who will be responsible for all of it? Are we training the right workforce that is needed to build and run all of this?

Space tourism is an exciting idea in theory, traveling to extra-terrestrial destinations, exploring new planets, all by being in an anti-gravitational environment. Through these diminishing borders and rapid advancements soon we'll be living the space life, all the virtual, metaverse gigs coming to reality. But before that let's explore space tourism and how the solar system will welcome humans.

What is Space tourism?

Ever since 1967, Apollo opened the getaway of space travel and the technological intervention spun to rise. Just like nomad tourism, space tourism is human space travel for commercializing interstellar for leisure or pleasurable adventures of the unknown. Space has different levels of horizons, according to research, orbital space has high speeds of 17,400 mph to allow the rocket to orbit around the Earth without falling onto the land. While lunar space tourism goes into subcortical flights and brings people back at a slower speed.

Studies have shown that in the upcoming years, commercial space exploration will hike up the economical database, by generating more than expected revenue. On these grounds, space tourism won't be limited to suborbital flights but rather take onto orbital flights, this revolutionary expenditure will change the future.

Everything aligns when the right team works together endlessly to reach the stars. The space exploration will only take place with enthusiastic and empowered individuals catering towards their roles.

Astronomers, space scientists, meteorologists, plasma physicists, aerospace engineers, avionics technicians, technical writers, space producers, and more will work in the field to make this space dream come true.

The attraction of Space exploration

Curiosity is the gateway to the seven wonders of the world. Humans are born with novelty-seeking, the drive to explore the unknown and push boundaries. This exploration has benefited society in a million ways, from making bulbs to jets.

The attraction towards exploring the space stems from the same desire for novelty seeking. We want to answer the most difficult questions about the universe, is there only darkness beyond that sky? Can we live on another planet if ours die? To address the challenges of space and the world, we have created new technologies, industries, and a union worldwide. This shows how vital space exploration is to humans. Many astronauts dwell on the idea of seeing the iconic thin blue outline of our planet, the quintessential experience makes the astronaut go back and back. However, are we entering this dimension with the right skills? Is our future workforce ready to take need the best

Who will lead the path?

The main question that still goes unanswered is who will run space tourism. When it comes to the future, there are infinite options. One decision and you will fly into an endless sky.

This expenditure has opened multiple career opportunities for the future workforce to take on for diversification and exploration of space. Currently, we cannot predict how people will find meaning and improve their lives through space tourism, but it will be a soul-awakening experience. According to experts, travelers would prefer a livelihood in space for which companies are working day and night to figure out accommodation and properties. The ideas include having space hotels, offices, research labs, and tents for operations.

Lastly, space tourism is just a start, we are moving into a dimensional field of physics and astronomy to create new opportunities and ground-breaking inventions to explore the untouchable. The new era of more refined and thoroughly accessed careers are on the rise, let's see how the world evolves in the next 10 years.


Ghazal Qureshi is the founder and CEO of UpBrainery, a Houston-based immersive educational technology platform that taps into neuroscience research-based programs to provide adaptive learning and individualized pathways for students at home or in the classroom.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston organizations launch collaborative center to boost cancer outcomes

new to HOU

Rice University's new Synthesis X Center officially launched last month to bring together experts in cancer care and chemistry.

The center was born out of what started about seven years ago as informal meetings between Rice chemist Han Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine. The level of collaboration between the two teams has grown significantly over the years, and monthly meetings now draw about 100 participants from across disciplines, fields and Houston-based organizations, according to a statement from Rice.

Researchers at the new SynthX Center will aim to turn fundamental research into clinical applications and make precision adjustments to drug properties and molecules. It will focus on improving cancer outcomes by looking at an array of factors, including prevention and detection, immunotherapies, the use of artificial intelligence to speed drug discovery and development, and several other topics.

"At Rice, we are strong on the fundamental side of research in organic chemistry, chemical biology, bioengineering and nanomaterials,” Xiao says in the statement. “Starting at the laboratory bench, we can synthesize therapeutic molecules and proteins with atom-level precision, offering immense potential for real-world applications at the bedside ... But the clinicians and fundamental researchers don’t have a lot of time to talk and to exchange ideas, so SynthX wants to serve as the bridge and help make these connections.”

SynthX plans to issue its first merit-based seed grants to teams with representatives from Baylor and Rice this month.

With this recognition from Rice, the teams from Xiao's lab and the TMC will also be able to expand and formalize their programs. They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

“I am confident that the SynthX Center will be a great resource for both students and faculty who seek to translate discoveries from fundamental chemical research into medical applications that improve people’s lives,” Thomas Killian, dean of the Wiess School of Natural Sciences, says in the release.

Rice announced that it had invested in four other research centers along with SynthX last month. The other centers include the Center for Coastal Futures and Adaptive Resilience, the Center for Environmental Studies, the Center for Latin American and Latinx Studies and the Rice Center for Nanoscale Imaging Sciences.

Earlier this year, Rice also announced its first-ever recipients of its One Small Step Grant program, funded by its Office of Innovation. The program will provide funding to faculty working on "promising projects with commercial potential," according to the website.

Houston physicist scores $15.5M grant for high-energy nuclear physics research


A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

The Rice team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas. Photo via

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.


This article originally ran on EnergyCapital.