Ellen Ochoa, the former center director and astronaut at the NASA's Johnson Space Center in Houston, and Jane Rigby (pictured), senior project scientist for NASA’s James Webb Space Telescope, were honored at the White House on May 3. Photo via the White House

Two astronauts recently received Presidential Medals of Freedom from President Joe Biden for their leadership in space.

Ellen Ochoa, the former center director and astronaut at the NASA's Johnson Space Center in Houston, and Jane Rigby, senior project scientist for NASA’s James Webb Space Telescope, were honored at the White House on May 3.

Ochoa was recognized for her leadership at NASA Johnson and for being the first Hispanic woman in space. Rigby was honored for her work on leading NASA’s transformational space telescope.

Ochoa spent 30 years with NASA, which included being the 11th director of JSC, deputy center director of JSC, and director of Flight Crew Operations. She served on the nine-day STS-56 mission aboard the space shuttle Discovery in 1993, and became the first Hispanic woman in space. She flew four more times to space with STS-66, STS-96, STS-110, and more.

“I’m so grateful for all my amazing NASA colleagues who shared my career journey with me,” Ochoa says in a NASA news release.

Rigby has published 160 peer-reviewed publications. She has been recognized with various awards like NASA’s Exceptional Scientific Achievement Medal, the Fred Kavli Prize Plenary Lecture from the American Astronomical Society (AAS), and the 2022 LGBTQ+ Scientist of the Year from Out to Innovate. Currently, she is an astrophysicist at NASA’s Goddard Space Flight Center.

Part of Rigby’s Medal of Freedom honor is due to her role in the success of NASA’s Webb mission. Webb is considered the most powerful space telescope, which launched on Dec. 25, 2021.

“I am proud Ellen and Jane are recognized for their incredible roles in NASA missions, for sharing the power of science with humanity, and inspiring the Artemis Generation to look to the stars,” says NASA Administrator Bill Nelson in the release. “Among her many accomplishments as a veteran astronaut and leader, Ellen served as the second female director of Johnson, flew in space four times, and logged nearly 1,000 hours in orbit. Jane is one of the many wizards at NASA who work every day to make the impossible possible. The James Webb Space Telescope represents the very best of scientific discovery that will continue to unfold the secrets of our universe. We appreciate Ellen and Jane for their service to NASA, and our country.”

Houston-based Dr. Theodoros Voloyiannis was one of six involved in a remote surgery in space demonstration. Photo courtesy of Texas Oncology

Houston surgeon takes part in first-of-its-kind surgery in space

remote control health care

A small surgical robot at the International Space Station completed its first surgery demo in zero gravity last week, and one of the surgeons tasked with the remote robotic operations on simulated tissue was Houston-based Dr. Theodoros Voloyiannis.

Voloyiannis took part in what is being referred to as “surgery in space” by being one of the six doctors remotely controlling spaceMIRA — Miniaturized In Vivo Robotic Assistant — that performed several operations on simulated tissue at the lab located in the space station. The surgeons operated remotely from earth in Lincoln, Nebraska. The remote surgeons worked to control the robot's hands to provide tension to the simulated tissue made of rubber bands. They then used the other hand to dissect the elastic tissue with scissors.

“I said during the procedure ‘it was a small rubber band cut, but a great leap for surgery,’“ Voloyiannis tells InnovationMap. “This was a huge milestone for me personally in my career.”

The robot was developed by Virtual Incision Corporation, and made possible through a partnership between NASA and the University of Nebraska. The team of surgeons took part in a demonstration that is considered a common surgical task, as they dissected the correct piece of tissue under pressure.

Latency is the time delay between when the command is sent and the robot receives it, and that was the big challenge the team faced. The delay was about 0.85 of a second according to what the colorectal surgeon who worked on spaceMIRA Dr. Michael Jobst said to CNN. The demo overall was a success according to the team, and posed a new-found adrenaline rush due to the groundbreaking innovation.

“The excitement of the new and the unknown,” Voloyiannis says on the feeling of doing the first operation of its kind. “I never thought I’d be doing something like this when I was in training and in medical school.”

Voloyiannis serves as the chairman of colon and rectal surgery for The US Oncology Network. He was chosen for this experiment due to his experience and expertise performing robotic colorectal surgery. Voloyiannis and the developers are hopeful that this type of technology will soon allow doctors to perform this specialized robotic surgery on patients living in rural areas without a specialized surgeon nearby, military battlefields, as well as regularly in space one day.

“The same concept of remote surgery regularly in space could certainly be entertained,” Voloyiannis says. “When you do things with an absence of gravity and perform a surgery in that environment — of course that changes the way we do things. When you have an absence of gravity with bodily fluids, it is a very hard surgery, but with partial gravity that idea can be entertained.

"Remotely, internet connectivity would have to be considered and you’d have someone remote like me here, while potentially there you’d have someone with less training doing the procedure there guiding the robot," he continues. "It’s quite the concept though.”

The doctors had to account for nearly a second of delay in connectivity. Photo courtesy of Texas Oncology

Houston-based Eden Grow Systems hopes to disrupt the agtech industry and revolutionize — and localize — produce. Photo via edengrowsystems.com

Houston startup with next-gen farming tech calls for crowdfunding as it plans to grow

seeing green

Whether it’s on Mars or at the kitchen table, entrepreneur Bart Womack wants to change what and how you eat.

But the CEO and founder of next-generation farming startup Eden Grow Systems is seeking crowdfunders to help feed the venture.

The company evokes images of a garden paradise on earth. But the idea behind the Houston-based NASA spinoff came from a more pragmatic view of the world. Womack’s company sells indoor food towers, self-contained, modular plant growth systems built on years of research by NASA scientists looking for the best way to feed astronauts in space.

The company has launched a $1.24 million regulated crowdfunding campaign to raise the money it needs to scale and expand manufacturing outside the current location in Washington state.

Additionally, the U.S. Air Force recently chose Eden as a food source for the U.S. Space Force base on remote Ascension Island, in the Atlantic Ocean, Womack tells InnovationMap. Another project with Space Center Houston is also in the works.

“We want to be the government and DOD contractor for these kind of next-generation farming systems,” he says.

The Houston-based company includes former NASA scientists, like recent hire Dr. L. Marshall Porterfield, of Purdue University, as an innovation advisor.

Womack, a former digital marketer, Houston public channel show host, night club owner and entertainment entrepreneur, left those ventures in 2012, after the birth of his first child. While taking a year to study trends research, in 2014, what he read intrigued and alarmed him.

“I’ll never forget, I came across a report from Chase Manhattan Bank….of the top 10 disruptive investment sectors, over the next decade,” he says. “At the very top of the list was food.”

Bart Womack founded Eden Grow Systems in 2017. Photo courtesy

His conclusions on the fragility of the world’s food supply system, due to overpopulation, and scarcer land, led him to launch Eden in 2017, funded by venture capital firm SpaceFund, Womack, his family, friends and angel investors.

Womack believes “black swan” events will only increase, disrupting the food supply system and further jeopardizing food supplies.

“We’re going to enter a period of hyper novelty in history,” Womack says.. "The system we’ve built for the last 100 years, the super optimized system, is going to begin to break apart."

To avert a centralized food production outcome, operated by corporate giants like Amazon or Walmart, Womack’s vision offers a decentralized alternative, leaving it in local hands.

With $2 million put into the company so far and a half million-dollars in sales last year, Womack argues that Eden has achieved much and can make food independence within reach for everyday families.

The company commercialized NASA technology to fill what it viewed as “a huge gap within the controlled…agricultural space.”

The tower is the building block of a modular, automated and vertical indoor plant growth system, with calibrated misting, fans, and LED lighting, controlled by an app.

The company website touts the towers as an easy way to grow plants like lettuce, carrots, tomatoes, and potatoes, with little water, no soil, and lots of air, without the expense and work of cultivating an earth-based garden.

For those who want to eat more than greens, the towers provide a way to breed fish and shrimp in an aquaponic version, recycling fish waste as plant fertilizer.

However, big plans come with big costs. The towers range in price from $5,000 to $7,000, although payment plans for those who qualify make it affordable.

Eden has sold around 100 of their towers so far, to a variety of customers. But rising costs and shipping delays have led to a a three-month backlog.

The manufacturing and shipping associated with larger installations means that even if the company made a million-dollar sale, delivery of the product would take a year.

“One of the hardest things…as a start-up, the last couple of years, is trying to narrow down exactly where the biggest payback is,” Womack says. “There is the lower hanging fruit, of small sales to individual buyers, but there’s the larger fruit of institutional buyers. But they can take months and years to convert into an actual buyer.”

Customers include several universities, including Texas A&M University and Prairie View A&M University, and talks are underway with other large academic institutions.

For now, attracting investors so the company can reach its funding goal poses the biggest challenge.

“Texas investors are very, very hard-nosed, and they’re not like West Coast investors. They want to understand exactly how they’re going to get their money back, and exactly how quickly,” he says.

Womack says the crowdfunding round would allow the company to expand manufacturing operations into Houston, deliver product faster, and invest in advertising.

“When we complete this round, and become completely self sufficient, we’re planning on moving to a $25 million valuation,” Womack says. “We can show, given money, we can scale the company.”

The city of Nassau Bay, next to NASA’s Johnson Space Center, has purchased towers and plans to purchase more, not for the production of food, but to grow ornamental flowers.

Womack says that city officials there found that it’s cheaper to grow the decorative plants themselves, rather than buying them.

The towers are adaptable, and can grow not only food but cannabis and other plants, and if buyers want to use them other purposes, that adds to the product’s appeal, Womack says.

Eden has also sold some towers to Harris County Precinct 2 and the city of Houston, as part of a project he says will turn food deserts throughout the area into “food prosperity zones.”

“Our goal is to be the farming equivalent of Boeing,” Womack says.

The new facility will be key to innovating across the Artemis missions. Photo courtesy of NASA and UTEP

NASA debuts digital design lab in Houston

future of engineering

NASA has opened a new center in Houston that's dedicated to digital space innovation for the future of spaceflight.

The Digital Engineering Design Center has recently opened in NASA’s Johnson Space Center in Houston. The facility is equipping the aerospace engineering community with skills and processes for digital designing that can build, test, and refine innovations before the manufacturing and assembling process in order to to test them.

“The DEDC will help prepare a modern American aerospace workforce by equipping it with valuable skills in digital engineering and encourage even more students to become engineers,” says Julie Kramer White, director of engineering at NASA Johnson, in a news release. “Collaborations like this one show we are committed to having the most talented, diverse, and motivated engineers that can continue to meet the exploration goals of the agency.”

Julie Kramer White, engineering director at NASA Johnson, delivered a speech at the DEDC ribbon cutting ceremony at NASA Johnson. Photo courtesy of James Blair/NASA

Digital engineering has many benefits to NASA, including reduced risk and cost, streamlined development schedule, and the ability to work with experts remotely.

NASA’s DEDC program is operated by the University of Texas at El Paso Aerospace Center. The partnership, which was celebrated at JSC and UTEP simultaneously, is also a part of a collaboration with Johnson’s Engineering Directorate and the Space Technology Mission Directorate.

The enrolled engineers and students will work on NASA projects related to in-situ resource utilization, or ISRU, which is a type of engineering that utilizes materials native to space.

ISRU is a key focus of the Artemis missions to the Moon and Mars. The engineers from NASA will be the ISRU experts, while UTEP professors will contribute their digital engineering software expertise.

Emmanuel Urquieta, chief medical officer of TRISH, joins the Houston Innovators Podcast. Photo via LinkedIn

Houston innovator on the importance of commercial missions for the future of space health research

HOUSTON INNOVATORS PODCAST EPISODE 189

With the rise of commercial space flight, researchers have increased access to space health data that's key to the future of the industry as a whole. The organization that's conducting this valuable research is based right in Houston's Texas Medical Center.

TRISH, or the Translational Research Institute for Space Health, is an organization based out of Baylor College of Medicine and partnered with NASA's Human Spaceflight group. As commercial space companies have emerged, TRISH has strategically aligned with these businesses to bring back health data from the civilian trips.

“Most of the research that’s done at NASA and other government agencies usually takes decades to get something that could be implemented in space or terrestrially," Dr. Emmanuel Urquieta, chief medical officer for TRISH, says on the Houston Innovators Podcast. "What we do at TRISH is something different.

"On the one hand, we look at really new technologies that are just an idea, but could be really game changing," he continues. "Then on the other hand, we look at technologies already in the market that could be tweaked to work in spaceflight.”

Since 2021, TRISH has conducted its research on four missions — Inspiration4, the first all-civilian mission to space; Axiom Mission 1, the first all civilian mission to the International Space Station; MS20, which flew two Japanese civilians to ISS; and, most recently, Axiom Mission 2, which included the first all-private crew commanded by a woman and two members of the Kingdom of Saudi Arabia's national astronaut program.

“We really saw the value of implementing research in civilians because they are different from your traditional government astronaut,” Urquieta says. “In civilians, you see a more diverse population.”

Urquieta says TRISH's experiments on these missions all fall within a few pillars of space health, including space's effects on sensory motor skills, like balance and motion sickness, as well as mental health, environmental data from the vehicles, vital monitoring, and more.

“We’ve developed a capability to collect high-priority, high-value data from these space flight participants without having to train them for long periods of time — which is a challenge, because they don’t train for years like traditional astronauts,” he explains.

The plan, Urquieta says, is to be able to share TRISH's space health data in order to more safely send humans into space. He shares more about TRISH's program and the challenges the organization faces on the show. Listen to the interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.

Little Place Labs, which provides near-real-time space analytics for both ground and space-based applications, secured a spot in the AWS Space Accelerator. Image via Getty Images

Houston startup secures spot in AWS space tech program

out-of-this-world tech

Just 14 space global startups were selected for Amazon Web Services 2023 AWS Space Accelerator, including one representing the Space City.

Little Place Labs, co-founded in 2020 at Oxford by Houstonian and CEO Bosco Lai, has been selected by AWS Space Accelerator. The mentorship program helps startups advance space solutions using the cloud to help develop next-gen space technology. generation of exciting space technology.

Little Place Labs aims to build space tech solutions to “make the world a better place.” They do this by providing near-real-time space analytics for both ground and space-based applications.

“Being a Houston based company is highly significant in the context of the AWS Space Accelerator program," Lai tells InnovationMap. “Houston's rich legacy in space exploration, with institutions like NASA's Johnson Space Center and its expertise in space-related fields, makes it an ideal location for companies involved in the space industry. Little Place Labs is proud to represent the city's hub of talent and innovation, which is crucial as the space sector evolves and establishes dynamic collaborations between government and commercial entities.”

One of Little Place Labs recent initiatives is a joint venture and license agreement to use Exodus Orbitals Software Development Kit for development of the commercial application in remote sensing domain. This project, expected to launch this year on a satellite mission, will allow access to space-based capabilities and observation of Earth via advanced machine learning algorithms.

The participants involved in AWS Space Accelerator will receive business development and strategy support, specialized training, mentoring, up to $100,000 in AWS Promotional Credit through the AWS Activate program, and a curriculum that also provides opportunities to work with AWS customers and AWS Partner Network that are seeking new, creative space solutions.Little Place Labs believe they have their own place in this space.

“We stand out from most in our cohort and other space companies due to our expertise and focus on software solutions,” Lai said. “As a revolutionary software company, we specialize in delivering near-real-time space analytics for both ground and space-based applications.

"Our belief is rooted in the notion that with the ongoing improvements and maturity of space infrastructure and hardware, along with the increasing availability of space data, advanced software has become the next essential phase. As famously predicted by Marc Andreessen, who stated that ‘software is eating the world,’ software companies like ours are poised to disrupt and transform industries by powering hardware solutions and extracting impactful analytics from data.”

Little Place Labs was founded by CEO Bosco Lai. Photo via littleplace.com

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston climatetech startup raises $21.5M series A to grow robotics solution

seeing green

A Houston energy tech startup has raised a $21.5 million series a round of funding to support the advancement of its automated technology that converts field wastes into stable carbon.

Applied Carbon, previously known as Climate Robotics, announced that its fresh round of funding was led by TO VC, with participation from Congruent Ventures, Grantham Foundation, Microsoft Climate Innovation Fund, S2G Ventures, Overture.vc, Wireframe Ventures, Autodesk Foundation, Anglo American, Susquehanna Foundation, US Endowment for Forestry and Communities, TELUS Pollinator Fund for Good, and Elemental Excelerator.

The series A funding will support the deployment of its biochar machines across Texas, Oklahoma, Arkansas, and Louisiana.

"Multiple independent studies indicate that converting crop waste into biochar has the potential to remove gigatons of CO2 from the atmosphere each year, while creating trillions of dollars in value for the world's farmers," Jason Aramburu, co-founder and CEO of Applied Carbon, says in a news release. "However, there is no commercially available technology to convert these wastes at low cost.

"Applied Carbon's patented in-field biochar production system is the first solution that can convert crop waste into biochar at a scale and a cost that makes sense for broad acre farming," he continues.

Applied Carbon rebranded in June shortly after being named a top 20 finalist in XPRIZE's four-year, $100 million global Carbon Removal Competition. The company also was named a semi-finalist and awarded $50,000 from the Department of Energy's Carbon Dioxide Removal Purchase Pilot Prize program in May.

"Up to one-third of excess CO2 that has accumulated in the atmosphere since the start of human civilization has come from humans disturbing soil through agriculture," Joshua Phitoussi, co-founder and managing partner at TO VC, adds. "To reach our net-zero objectives, we need to put that carbon back where it belongs.

"Biochar is unique in its potential to do so at a permanence and price point that are conducive to mass-scale adoption of carbon dioxide removal solutions, while also leaving farmers and consumers better off thanks to better soil health and nutrition," he continues. "Thanks to its technology and business model, Applied Carbon is the only company that turns that potential into reality."

The company's robotic technology works in field, picking up agricultural crop residue following harvesting and converts it into biochar in a single pass. The benefits included increasing soil health, improving agronomic productivity, and reducing lime and fertilizer requirements, while also providing a carbon removal and storage solution.

"We've been looking at the biochar sector for over a decade and Applied Carbon's in-field proposition is incredibly compelling," adds Joshua Posamentier, co-founder and managing partner of Congruent Ventures. "The two most exciting things about this approach are that it profitably swings the agricultural sector from carbon positive to carbon negative and that it can get to world-scale impact, on a meaningful timeline, while saving farmers money."

------

This article originally ran on EnergyCapital.

Rice University makes top 5 lists of best biz schools in the country

top ranking

MBA programs at Rice University’s Jones Graduate School of Business have landed two top five rankings in The Princeton Review’s annual list of the country’s best business schools.

Rice earned a No. 4 ranking for its online MBA program and a No. 5 ranking for its MBA program in finance.

“These rankings are indicative of the high-quality education offered through all of our MBA programs. Students studying finance at Rice … are taught by faculty whose research and expertise enhances core classes and hard skills, so students are not just prepared to be successful in their careers, but they are also prepared to think critically about their roles and to lead in their industry,” Peter Rodriguez, dean of the Jones Graduate School of Business, says in a news release.

“These rankings are also indicative of our broader approach: offering students flexibility in their pursuit of an MBA, while retaining the experience of studying with world-class faculty — no matter what program they choose,” Rodriguez adds.

Rice also achieved high rankings in two other MBA categories: No. 8 for “greatest resources for women” and No. 10 for “greatest resources for minority students.”

The Princeton Review’s 2024 business school rankings are based on data from surveys of administrators at more than 400 business schools as well as surveys of 32,200 students enrolled in the schools’ MBA programs.

“The schools that made our list for 2024 all have impressive individual distinctions,” Rob Franek, The Princeton Review’s editor-in-chief, says in a news release. “What they share are three characteristics that broadly informed our criteria for these rankings: outstanding academics, robust experiential learning components and excellent career services.”

Rice also ranks as the top school for graduate entrepreneurship programs, which Princeton Review released last fall. The University of Houston ranks as No. 1 for undergraduate entrepreneurship programs.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a Houston chemist, a cleaning product founder, and a UH researcher.


James Tour, chemist at Rice University

The four-year agreement will support the team’s ongoing work on removing PFAS from soil. Photo via Rice University

A Rice University chemist James Tour has secured a new $12 million cooperative agreement with the U.S. Army Engineer Research and Development Center on the team’s work to efficiently remove pollutants from soil.

The four-year agreement will support the team’s ongoing work on removing per- and polyfluoroalkyl substances (PFAS) from contaminated soil through its rapid electrothermal mineralization (REM) process, according to a statement from Rice.

“This is a substantial improvement over previous methods, which often suffer from high energy and water consumption, limited efficiency and often require the soil to be removed,” Tour says. Read more.

Kristy Phillips, founder and CEO of Clean Habits

What started as a way to bring natural cleaning products in from overseas has turned into a promising application for more sustainable agriculture solutions. Photo via LinkedIn

When something is declared clean, one question invariably springs to mind: just how clean is clean?

Then it is, “What metrics decide what’s clean and what’s not?”

To answer those questions, one must abandon the subjective and delve into the scientific — and that’s where Clean Habits come in. The company has science on its side with Synbio, a patented cleaning formula that combines a unique blend of prebiotics and probiotics for their signature five-day clean.

“Actually, we are a synbiotic, which is a prebiotic and a probiotic fused together,” says Kristy Phillips, founder and CEO of Clean Habits. “And that's what gives us the five-day clean, and we also have the longest shelf life — three years — of any probiotic on the market.” Read more.

Jiming Bao, professor at University of Houston

Th innovative method involves techniques that will be used to measure and visualize temperature distributions without direct contact with the subject being photographed. Photo via UH.edu

A University of Houston professor of electrical and computer engineering, Jiming Bao, is improving thermal imaging and infrared thermography with a new method to measure the continuous spectrum of light.

His innovative method involves techniques that will be used to measure and visualize temperature distributions without direct contact with the subject being photographed, according to the university. The challenges generally faced by conventional thermal imaging is addressed, as the new study hopes to eliminate temperature dependence, and wavelength.

“We designed a technique using a near-infrared spectrometer to measure the continuous spectrum and fit it using the ideal blackbody radiation formula,” Bao tells the journal Device. “This technique includes a simple calibration step to eliminate temperature- and wavelength-dependent emissivity.” Read more.