Here's what Houston tech and startup news trended this year in InnovationMap's space tech category. Photo via NASA

Editor's note: As 2024 comes to a close, InnovationMap is looking back at the year's top stories in Houston innovation. In the Space City, there were dozens of space tech stories, from experts' thoughts on commercialization to the IPO of a Houston company. Here are five Houston space tech-focused articles that stood out to readers this year — be sure to click through to read the full story.

Houston space tech co. rolls out futuristic lunar rover for NASA's Artemis missions

Intuitive Machine unveiled its RACER lunar terrain vehicle at Space Center Houston. Photo courtesy of Intuitive Machines

Houston-based space exploration company Intuitive Machines just unveiled its version of a lunar terrain vehicle that’s designed to be used by astronauts in NASA’s Artemis moon discovery program.

Intuitive Machine recently rolled out its RACER lunar terrain vehicle (LTV) at Space Center Houston. RACER stands for Reusable Autonomous Crewed Exploration Rover.

The rover can accommodate two astronauts and nearly 900 pounds of cargo. In addition, it can pull a trailer loaded with almost 1,800 pounds of cargo. Continue reading.

Axiom Space CEO steps down, search begins for replacement

Axiom Space Co-founder Michael Suffredini is stepping down as CEO. Photo courtesy of Axiom Space

Houston-based space exploration company Axiom Space is searching for a new CEO.

Co-founder Mike Suffredini stepped down effective August 9 as CEO. He cites unidentified personal reasons for his transition from CEO to company advisor. Suffredini remains a board member of Axiom Space.

Co-founder Kam Ghaffarian, the company’s executive chairman, is serving as interim CEO until Axiom Space taps Suffredini’s permanent successor.

“We are grateful for Mike’s invaluable contributions to human space exploration and the remarkable growth of Axiom Space,” Ghaffarian says in a news release. “He will continue to offer his unique perspective and expertise as we advance our mission.” Continue reading.

Houston space tech company secures $116.9M NASA contract

The $116.9 million agreement will task Intuitive Machines with delivering six science and technology payloads to the moon. Photo courtesy of Intuitive Machines

NASA is again entrusting a Houston space business with lunar deliveries.

Intuitive Machines (Nasdaq: LUNR, LUNRW) has secured its fourth contract with NASA’s Commercial Lunar Payload Services, or CLPS, program. The $116.9 million agreement will task Intuitive Machines with delivering six science and technology payloads, which will include one European Space Agency-led drill suite to the Moon’s South Pole.

“Over the last several years, we’ve witnessed NASA’s successful Artemis I mission and the campaign’s progress toward sustainably returning humans to the surface of the Moon, highlighting the importance of autonomous missions that advance humanity’s understanding of the Moon and the commercial services required to support the industry,” Intuitive Machines CEO Steve Altemus says in a news release. “Intuitive Machines looks forward to working closely with the NASA team to deliver mission success once again.” Continue reading.

Houston Spaceport takes off with second phase of development

The next phase of the Houston Spaceport will build out connectivity and workforce training. Rendering via Houston Airports

Since the Houston Spaceport secured the 10th FAA-Licensed commercial spaceport designation in 2015, the development's tenants have gone on to secure billions in NASA contracts. Now, the Houston Spaceport is on to its next phase of growth.

“Reflecting on its meteoric rise, the Spaceport has seen remarkable growth in a short span of time. From concepts on paper to the opening of Axiom Space, Collins Aerospace, and Intuitive Machines, the journey has been nothing short of extraordinary,” says Arturo Machuca, director of Ellington Airport and the Houston Spaceport, in a news release. “These anchor tenants, collectively holding about $5 billion in contracts with NASA and other notable aerospace companies, are not just shaping the future of space exploration but injecting vitality into Houston’s economy.” Continue reading.

Houston college lands $5M NASA grant to launch new aerospace research center

The five-year grant from NASA will go toward creating the NASA MIRO Inflatable Deployable Environments and Adaptive Space Systems Center at UH. Photo via UH.edu

The University of Houston was one of seven minority-serving institutions to receive a nearly $5 million grant this month to support aerospace research focused on extending human presence on the moon and Mars.

The $4,996,136 grant over five years is funded by the NASA Office of STEM Engagement Minority University Research and Education Project (MUREP) Institutional Research Opportunity (MIRO) program. It will go toward creating the NASA MIRO Inflatable Deployable Environments and Adaptive Space Systems (IDEAS2) Center at UH, according to a statement from the university.

“The vision of the IDEAS2 Center is to become a premier national innovation hub that propels NASA-centric, state-of-the-art research and promotes 21st-century aerospace education,” Karolos Grigoriadis, Moores Professor of Mechanical Engineering and director of aerospace engineering at UH, said in a statement. Continue reading.

The Space Cities Network launched last month with the Space City as a founding member. Photo via Houston First

Houston joins newly launched 4-city, space-focused network

space cities

Four cities from around the world have teamed up on a mission to grow aeronautics, space, and astronomy.

The Space Cities Network launched last month at the International Congress and Convention Association Congress in Abu Dhabi. The first four missions to join the initiative represent four continents and include Houston; Lausanne, Switzerland; Christchurch, New Zealand; and Seoul, South Korea.

“Space is the mirror of humanity and of our community – a quest for tomorrow. A world of exploration and innovation impacting a future that needs support and guidance. Our community, working collectively with Space experts can be one of the keystones of it, and the Space Cities Network is there to help facilitate that,” Space Cities Network Co-Chair Gerald Howard, who represents Switzerland, says in a news release.

Houston First Corp. will oversee the Space City's participation in the international alliance, which was established to increase collaboration between universities, government agencies, industry and corporations.

“Houston is proud to join this international network, leveraging our rich history in space exploration to drive innovation and collaboration across the global space sector,” Michael Heckman, president and CEO of Houston First, says in the release. “As a hub for cutting-edge research and industry, we are committed to fostering partnerships that will propel the future of aeronautics and space.”

According to the new alliance, the space economy is expected to reach $1.8 trillion by 2035, and collaboration across innovation and technology is needed to reach the industry's goals.

“Cities will play an integral, legacy role as hubs for events supporting the space community, hosting conferences, summits, and meetings that bring together industry leaders, researchers, and policymakers,” Co-Chair Claire Hector-Taylor from New Zealand, says.

Houston First Corp. will oversee the Space City's participation in the international alliance. Photo courtesy of Houston First

Ellen Ochoa, the former center director and astronaut at the NASA's Johnson Space Center in Houston, and Jane Rigby (pictured), senior project scientist for NASA’s James Webb Space Telescope, were honored at the White House on May 3. Photo via the White House

Female leaders from NASA receive presidential awards

space medals

Two astronauts recently received Presidential Medals of Freedom from President Joe Biden for their leadership in space.

Ellen Ochoa, the former center director and astronaut at the NASA's Johnson Space Center in Houston, and Jane Rigby, senior project scientist for NASA’s James Webb Space Telescope, were honored at the White House on May 3.

Ochoa was recognized for her leadership at NASA Johnson and for being the first Hispanic woman in space. Rigby was honored for her work on leading NASA’s transformational space telescope.

Ochoa spent 30 years with NASA, which included being the 11th director of JSC, deputy center director of JSC, and director of Flight Crew Operations. She served on the nine-day STS-56 mission aboard the space shuttle Discovery in 1993, and became the first Hispanic woman in space. She flew four more times to space with STS-66, STS-96, STS-110, and more.

“I’m so grateful for all my amazing NASA colleagues who shared my career journey with me,” Ochoa says in a NASA news release.

Rigby has published 160 peer-reviewed publications. She has been recognized with various awards like NASA’s Exceptional Scientific Achievement Medal, the Fred Kavli Prize Plenary Lecture from the American Astronomical Society (AAS), and the 2022 LGBTQ+ Scientist of the Year from Out to Innovate. Currently, she is an astrophysicist at NASA’s Goddard Space Flight Center.

Part of Rigby’s Medal of Freedom honor is due to her role in the success of NASA’s Webb mission. Webb is considered the most powerful space telescope, which launched on Dec. 25, 2021.

“I am proud Ellen and Jane are recognized for their incredible roles in NASA missions, for sharing the power of science with humanity, and inspiring the Artemis Generation to look to the stars,” says NASA Administrator Bill Nelson in the release. “Among her many accomplishments as a veteran astronaut and leader, Ellen served as the second female director of Johnson, flew in space four times, and logged nearly 1,000 hours in orbit. Jane is one of the many wizards at NASA who work every day to make the impossible possible. The James Webb Space Telescope represents the very best of scientific discovery that will continue to unfold the secrets of our universe. We appreciate Ellen and Jane for their service to NASA, and our country.”

Houston-based Dr. Theodoros Voloyiannis was one of six involved in a remote surgery in space demonstration. Photo courtesy of Texas Oncology

Houston surgeon takes part in first-of-its-kind surgery in space

remote control health care

A small surgical robot at the International Space Station completed its first surgery demo in zero gravity last week, and one of the surgeons tasked with the remote robotic operations on simulated tissue was Houston-based Dr. Theodoros Voloyiannis.

Voloyiannis took part in what is being referred to as “surgery in space” by being one of the six doctors remotely controlling spaceMIRA — Miniaturized In Vivo Robotic Assistant — that performed several operations on simulated tissue at the lab located in the space station. The surgeons operated remotely from earth in Lincoln, Nebraska. The remote surgeons worked to control the robot's hands to provide tension to the simulated tissue made of rubber bands. They then used the other hand to dissect the elastic tissue with scissors.

“I said during the procedure ‘it was a small rubber band cut, but a great leap for surgery,’“ Voloyiannis tells InnovationMap. “This was a huge milestone for me personally in my career.”

The robot was developed by Virtual Incision Corporation, and made possible through a partnership between NASA and the University of Nebraska. The team of surgeons took part in a demonstration that is considered a common surgical task, as they dissected the correct piece of tissue under pressure.

Latency is the time delay between when the command is sent and the robot receives it, and that was the big challenge the team faced. The delay was about 0.85 of a second according to what the colorectal surgeon who worked on spaceMIRA Dr. Michael Jobst said to CNN. The demo overall was a success according to the team, and posed a new-found adrenaline rush due to the groundbreaking innovation.

“The excitement of the new and the unknown,” Voloyiannis says on the feeling of doing the first operation of its kind. “I never thought I’d be doing something like this when I was in training and in medical school.”

Voloyiannis serves as the chairman of colon and rectal surgery for The US Oncology Network. He was chosen for this experiment due to his experience and expertise performing robotic colorectal surgery. Voloyiannis and the developers are hopeful that this type of technology will soon allow doctors to perform this specialized robotic surgery on patients living in rural areas without a specialized surgeon nearby, military battlefields, as well as regularly in space one day.

“The same concept of remote surgery regularly in space could certainly be entertained,” Voloyiannis says. “When you do things with an absence of gravity and perform a surgery in that environment — of course that changes the way we do things. When you have an absence of gravity with bodily fluids, it is a very hard surgery, but with partial gravity that idea can be entertained.

"Remotely, internet connectivity would have to be considered and you’d have someone remote like me here, while potentially there you’d have someone with less training doing the procedure there guiding the robot," he continues. "It’s quite the concept though.”

The doctors had to account for nearly a second of delay in connectivity. Photo courtesy of Texas Oncology

Houston-based Eden Grow Systems hopes to disrupt the agtech industry and revolutionize — and localize — produce. Photo via edengrowsystems.com

Houston startup with next-gen farming tech calls for crowdfunding as it plans to grow

seeing green

Whether it’s on Mars or at the kitchen table, entrepreneur Bart Womack wants to change what and how you eat.

But the CEO and founder of next-generation farming startup Eden Grow Systems is seeking crowdfunders to help feed the venture.

The company evokes images of a garden paradise on earth. But the idea behind the Houston-based NASA spinoff came from a more pragmatic view of the world. Womack’s company sells indoor food towers, self-contained, modular plant growth systems built on years of research by NASA scientists looking for the best way to feed astronauts in space.

The company has launched a $1.24 million regulated crowdfunding campaign to raise the money it needs to scale and expand manufacturing outside the current location in Washington state.

Additionally, the U.S. Air Force recently chose Eden as a food source for the U.S. Space Force base on remote Ascension Island, in the Atlantic Ocean, Womack tells InnovationMap. Another project with Space Center Houston is also in the works.

“We want to be the government and DOD contractor for these kind of next-generation farming systems,” he says.

The Houston-based company includes former NASA scientists, like recent hire Dr. L. Marshall Porterfield, of Purdue University, as an innovation advisor.

Womack, a former digital marketer, Houston public channel show host, night club owner and entertainment entrepreneur, left those ventures in 2012, after the birth of his first child. While taking a year to study trends research, in 2014, what he read intrigued and alarmed him.

“I’ll never forget, I came across a report from Chase Manhattan Bank….of the top 10 disruptive investment sectors, over the next decade,” he says. “At the very top of the list was food.”

Bart Womack founded Eden Grow Systems in 2017. Photo courtesy

His conclusions on the fragility of the world’s food supply system, due to overpopulation, and scarcer land, led him to launch Eden in 2017, funded by venture capital firm SpaceFund, Womack, his family, friends and angel investors.

Womack believes “black swan” events will only increase, disrupting the food supply system and further jeopardizing food supplies.

“We’re going to enter a period of hyper novelty in history,” Womack says.. "The system we’ve built for the last 100 years, the super optimized system, is going to begin to break apart."

To avert a centralized food production outcome, operated by corporate giants like Amazon or Walmart, Womack’s vision offers a decentralized alternative, leaving it in local hands.

With $2 million put into the company so far and a half million-dollars in sales last year, Womack argues that Eden has achieved much and can make food independence within reach for everyday families.

The company commercialized NASA technology to fill what it viewed as “a huge gap within the controlled…agricultural space.”

The tower is the building block of a modular, automated and vertical indoor plant growth system, with calibrated misting, fans, and LED lighting, controlled by an app.

The company website touts the towers as an easy way to grow plants like lettuce, carrots, tomatoes, and potatoes, with little water, no soil, and lots of air, without the expense and work of cultivating an earth-based garden.

For those who want to eat more than greens, the towers provide a way to breed fish and shrimp in an aquaponic version, recycling fish waste as plant fertilizer.

However, big plans come with big costs. The towers range in price from $5,000 to $7,000, although payment plans for those who qualify make it affordable.

Eden has sold around 100 of their towers so far, to a variety of customers. But rising costs and shipping delays have led to a a three-month backlog.

The manufacturing and shipping associated with larger installations means that even if the company made a million-dollar sale, delivery of the product would take a year.

“One of the hardest things…as a start-up, the last couple of years, is trying to narrow down exactly where the biggest payback is,” Womack says. “There is the lower hanging fruit, of small sales to individual buyers, but there’s the larger fruit of institutional buyers. But they can take months and years to convert into an actual buyer.”

Customers include several universities, including Texas A&M University and Prairie View A&M University, and talks are underway with other large academic institutions.

For now, attracting investors so the company can reach its funding goal poses the biggest challenge.

“Texas investors are very, very hard-nosed, and they’re not like West Coast investors. They want to understand exactly how they’re going to get their money back, and exactly how quickly,” he says.

Womack says the crowdfunding round would allow the company to expand manufacturing operations into Houston, deliver product faster, and invest in advertising.

“When we complete this round, and become completely self sufficient, we’re planning on moving to a $25 million valuation,” Womack says. “We can show, given money, we can scale the company.”

The city of Nassau Bay, next to NASA’s Johnson Space Center, has purchased towers and plans to purchase more, not for the production of food, but to grow ornamental flowers.

Womack says that city officials there found that it’s cheaper to grow the decorative plants themselves, rather than buying them.

The towers are adaptable, and can grow not only food but cannabis and other plants, and if buyers want to use them other purposes, that adds to the product’s appeal, Womack says.

Eden has also sold some towers to Harris County Precinct 2 and the city of Houston, as part of a project he says will turn food deserts throughout the area into “food prosperity zones.”

“Our goal is to be the farming equivalent of Boeing,” Womack says.

The new facility will be key to innovating across the Artemis missions. Photo courtesy of NASA and UTEP

NASA debuts digital design lab in Houston

future of engineering

NASA has opened a new center in Houston that's dedicated to digital space innovation for the future of spaceflight.

The Digital Engineering Design Center has recently opened in NASA’s Johnson Space Center in Houston. The facility is equipping the aerospace engineering community with skills and processes for digital designing that can build, test, and refine innovations before the manufacturing and assembling process in order to to test them.

“The DEDC will help prepare a modern American aerospace workforce by equipping it with valuable skills in digital engineering and encourage even more students to become engineers,” says Julie Kramer White, director of engineering at NASA Johnson, in a news release. “Collaborations like this one show we are committed to having the most talented, diverse, and motivated engineers that can continue to meet the exploration goals of the agency.”

Julie Kramer White, engineering director at NASA Johnson, delivered a speech at the DEDC ribbon cutting ceremony at NASA Johnson. Photo courtesy of James Blair/NASA

Digital engineering has many benefits to NASA, including reduced risk and cost, streamlined development schedule, and the ability to work with experts remotely.

NASA’s DEDC program is operated by the University of Texas at El Paso Aerospace Center. The partnership, which was celebrated at JSC and UTEP simultaneously, is also a part of a collaboration with Johnson’s Engineering Directorate and the Space Technology Mission Directorate.

The enrolled engineers and students will work on NASA projects related to in-situ resource utilization, or ISRU, which is a type of engineering that utilizes materials native to space.

ISRU is a key focus of the Artemis missions to the Moon and Mars. The engineers from NASA will be the ISRU experts, while UTEP professors will contribute their digital engineering software expertise.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.

Luxury transportation startup connects Houston with Austin and San Antonio

On The Road Again

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare.

Bookings are now available Monday through Saturday with departure times in the morning and evening. One-way fares range from $47-$87, putting Shutto in a similar lane to Dallas-based Vonlane, which also offers routes from Houston to Austin and San Antonio.

Shutto enters the market at a time when highway congestion is a hotter topic than ever. With high-speed rail still years in the future, its model aims to provide fast, predictable service at commuter prices.

The startup touts an on-time departure guarantee and a relaxed, intimate ride. Only 12 passengers fit inside each Mercedes Sprinter van, equipped with Wi-Fi and leather seating. And each route includes a pit stop at roadside favorite Buc-ee's.

In announcing the launch, founder and CEO Alberto Salcedo called the company a new category in Texas mobility.

“We are bringing true disruptive mobility to Texas: faster and more convenient than flying (no security lines, no delays), more comfortable and exclusive than the bus or train, and up to 70 percent cheaper than private transfers or Uber Black,” Salcedo said in a release.

“Whether you’re commuting for business, visiting family, exploring Texas wineries, or doing a taco tour in San Antonio, Shutto makes traveling between these cities as easy and affordable as riding inside the city."

Beyond the scheduled routes, Shutto offers private, customizable trips anywhere in the country, a service it expects will appeal to corporate retreat planners, party planners, and tourists alike.

In Houston, the service picks up and drops off near the Galleria at the Foam Coffee & Kitchen parking lot, 5819 Richmond Ave.. In San Antonio, it is located at La Panadería Bakery’s parking lot at 8305 Broadway. In Austin, the location is the Pershing East Café parking lot at 2501 E. Fifth St.

---

This article originally appeared on CultureMap.com.

Houston-area lab grows with focus on mobile diagnostics and predictive medicine

mobile medicine

When it comes to healthcare, access can be a matter of life and death. And for patients in skilled nursing facilities, assisted living or even their own homes, the ability to get timely diagnostic testing is not just a convenience, it’s a necessity.

That’s the problem Principle Health Systems (PHS) set out to solve.

Founded in 2016 in Clear Lake, Texas, PHS began as a conventional laboratory but quickly pivoted to mobile diagnostics, offering everything from core blood work and genetic testing to advanced imaging like ultrasounds, echocardiograms, and X-rays.

“We were approached by a group in a local skilled nursing facility to provide services, and we determined pretty quickly there was a massive need in this area,” says James Dieter, founder, chairman and CEO of PHS. “Turnaround time is imperative. These facilities have an incredibly sick population, and of course, they lack mobility to get the care that they need.”

What makes PHS unique is not only what they do, but where they do it. While they operate one of the largest labs serving skilled nursing facilities in the state, their mobile teams go wherever patients are, whether that’s a nursing home, a private residence or even a correctional facility.

Diagnostics, Dieter says, are at the heart of medical decision-making.

“Seventy to 80 percent of all medical decisions are made from diagnostic results in lab and imaging,” he says. “The diagnostic drives the doctor’s or the provider’s next move. When we recognized a massive slowdown in lab results, we had to innovate to do it faster.”

Innovation at PHS isn’t just about speed; it’s about accessibility and precision.

Chris Light, COO, explains: “For stat testing, we use bedside point-of-care instruments. Our phlebotomists take those into the facilities, test at the bedside, and get results within minutes, rather than waiting days for results to come back from a core lab.”

Scaling a mobile operation across multiple states isn’t simple, but PHS has expanded into nine states, including Texas, Oklahoma, Kansas, Missouri and Arizona. Their model relies on licensed mobile phlebotomists, X-ray technologists and sonographers, all trained to provide high-level care outside traditional hospital settings.

The financial impact for patients is significant. Instead of ambulance rides and ER visits costing thousands, PHS services often cost just a fraction, sometimes only tens or hundreds of dollars.

“Traditionally, without mobile diagnostics, the patient would be loaded into a transportation vehicle, typically an ambulance, and taken to a hospital,” Dieter says. “Our approach is a fraction of the cost but brings care directly to the patients.”

The company has also embraced predictive and personalized medicine, offering genetic tests that guide medication decisions and laboratory tests that predict cognitive decline from conditions like Alzheimer's and Parkinson’s.

“We actively look for complementary services to improve patient outcomes,” Dieter says. “Precision medicine and predictive testing have been a great value-add for our providers.”

Looking to the future, PHS sees mobile healthcare as part of a larger trend toward home-based care.

“There’s an aging population that still lives at home with caretakers,” Dieter explains. “We go into the home every day, whether it’s an apartment, a standalone home, or assisted living. The goal is to meet patients where they are and reduce the need for hospitalization.”

Light highlighted another layer of innovation: predictive guidance.

“We host a lot of data, and labs and imaging drive most treatment decisions,” Light says. “We’re exploring how to deploy diagnostics immediately based on results, eliminating hours of delay and keeping patients healthier longer.”

Ultimately, innovation at PHS isn’t just about technology; it’s about equity.

“There’s an 11-year life expectancy gap between major metro areas and rural Texas,” Dieter says. “Our innovation has been leveling the field, so everyone has access to high-quality diagnostics and care, regardless of where they live.”