Houston innovator breaks down industry silos with new bp, NASA partnership

houston innovators podcast episode 252

Ken Nguyen, principal technical program manager at bp, joins the Houston Innovators Podcast to discuss the company's new partnership with NASA. Photo courtesy of bp

The recently announced partnership between bp and NASA is a match made in Houston. The energy giant, which as its United States headquarters in Houston, entered into a Space Act Agreement with NASA to combine resources and efforts with innovation in mind.

"Houston has always been known as the Space City, and we're also known as the Energy Capital of the World, but there hasn't always been collaboration," Ken Nguyen, principal technical program manager at bp, says on the Houston Innovators Podcast. "The challenges that NASA is facing is very similar to the challenges that the oil industry faces — we operate in very harsh environments, safety is the most critical aspect of our operation, and now the economic business model for NASA has changed."

Nguyen explains that while both bp and NASA are navigating similar challenges and changes within their industry, they are going about it in different ways. That's where the opportunity to collaborate comes in.

The partnership, which is still new and not fully fleshed out, will look at collaborative innovation into a few focus areas to start out with, including hydrogen storage and development, AI and general intelligence, robotics, and remote operations

"Houston continues to excel — in energy production and in space exploration — but by coming together," Nguyen says, "and for us to be able to tap into (NASA's) knowledge is tremendous. And we, within oil and gas, have a unique set of skills to blend into that with the hopes being that the city becomes this incubator for technology. The potential is there."

Nguyen oversees the implementation of new technologies at bp, and that includes software and hardtech, from cybersecurity to the digitization of the industry, which is an integral part of bp's energy transition plan, Nguyen says on the show.

"For bp, we do feel like as we transition as an international oil and gas company into an integrated energy company and we lean into the energy transition, the adoption of new technology is a critical part of making that viable for the planet and for the company," he says.

According to Nguyen, bp has invested its resources into exploring energy transition technologies like electric vehicle charging — including opening a fast-charging station at its Houston office — and renewable energy, including a solar farm about 10 miles northeast of Corpus Christi.

Another technology bp is keen on is digital twin technology, which can be crucial for enhancing safety for bp personnel and reducing emissions.

Nguyen says digital twin technology "allows us to be able to design and mirror scenarios with real-time variables, such as weather, off-take demands, and volatility."

A project that would create the largest urban solar farm in the country just got the greenlight. Photo via Getty Images

Houston gets approval to build $70M solar farm on former landfill property

greenlight

A vacant landfill that for decades endangered and diminished Houston’s low-income Sunnyside neighborhood has gotten the green light for conversion into a solar energy farm.

Houston Mayor Sylvester Turner said on Earth Day, April 22, that the Texas Commission on Environmental Quality had granted a permit for the $70 million Sunnyside Solar Farm, which was originally announced last year.

The project will be anchored by 70 megawatts of solar panels installed across 224 acres. The farm will produce enough energy to power 5,000 to 10,000 homes. The project also will feature a 2-megawatt community solar installation, an education hub, and an agricultural center

Image courtesy of the city of Houston

City officials say the project will be the largest urban solar farm in the country and will remove an estimated 60,000 tons of carbon dioxide from the air each year.

“I am optimistic about the future of this land and the people who live in the resilient neighborhood that developed around this environmental injustice,” Turner says in a news release. “Most importantly, it will transform the built environment of a historically under-served and under-resourced community by bringing private investment to Sunnyside, a predominantly Black and brown community that struggles daily with historical inequities that have created present-day disparities.”

In conjunction with the project, 175 Houstonians will be trained at Houston Community College and Lone Star College for solar and solar-related jobs.

“We used an environmental justice lens to reimagine this landfill. And we made equity the central and most critical component of our site redevelopment plans for Sunnyside,” Turner says.

Sunnyside Energy plans to seek permission from the Electric Reliability Council of Texas (ERCOT) to connect to the electric grid serving the bulk of Texas.

The Sunnyside landfill opened in the 1930s; it was closed in the 1970s after high levels of lead were discovered at the site. The City of Houston owns the land and is leasing it to Sunnyside Energy, which will own and operate the solar farm, for $1. Sunnyside Energy is a subsidiary of Houston-based Wolfe Energy.

A report from RMI, a nonprofit that promotes clean energy, estimated that the more than 10,000 shuttered landfills across the U.S. could host 63 gigawatts of solar capacity, enough energy to power 7.8 million American homes.

The mayor announced the approval on Earth Day. Photo courtesy of the city of Houston

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston research breakthrough could pave way for next-gen superconductors

Quantum Breakthrough

A study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston humanoid robotics startup inks new deal to deploy its rugged robots

big deal

Houston-based Persona AI announced the expansion of its operations at the Ion and a major milestone in deploying its humanoid robots.

The company will establish a state-of-the-art development center in the prominent corner suite on the first floor of the Ion, and is slated to begin expansion in June.

“We chose the Ion because it’s more than just a building — it’s a thriving innovation ecosystem,” CEO Nicolaus Radford said in a news release. “This is where Houston’s tech future is being built. It’s a convergence point for the people, energy, and ideas that power our mission to redefine human-machine collaboration. For an industrial, AI-driven robotics company, there’s no better place to scale than in the heart of Houston.”

Persona AI’s new development center will be located in the suite utilized by the Ion Prototyping Lab, managed by TXRX Labs. The IPL will transition its operations to the expanded TXRX facility in the East End Maker Hub, which will allow the lab to grow its team and meet increased demand.

At the start of the year, Persona AI closed $25 million in pre-seed funding. Earlier this month, the company announced a memorandum of understanding with HD Korea Shipbuilding & Offshore Engineering, HD Hyundai Robotic, and Korean manufacturing firm Vazil Company to create and deploy humanoid robots for complex welding tasks in shipyards.

The project will deliver prototype humanoids by the end of 2026, with field testing and full commercial deployment scheduled to begin in 2027.

"As heavy industry faces growing labor constraints—especially in high-risk trades like welding—the need for rugged, autonomous humanoid robots is more urgent than ever,” Radford added in a separate statement. “This partnership with HD Hyundai and Vazil is more than symbolic—deploying to the shipyard is one of the largest real-world proving grounds for Persona's tough, humanoid robots.”

Houston climatech co. to lead one of world's largest carbon capture projects

Big Deal

Houston-based CO2 utilization company HYCO1 has signed a memorandum of understanding with Malaysia LNG Sdn. Bhd., a subsidiary of Petronas, for a carbon capture project in Malaysia, which includes potential utilization and conversion of 1 million tons of carbon dioxide per year.

The project will be located in Bintulu in Sarawak, Malaysia, where Malaysia LNG is based, according to a news release. Malaysia LNG will supply HYCO1 with an initial 1 million tons per year of raw CO2 for 20 years starting no later than 2030. The CCU plant is expected to be completed by 2029.

"This is very exciting for all stakeholders, including HYCO1, MLNG, and Petronas, and will benefit all Malaysians," HYCO1 CEO Gregory Carr said in the release. "We approached Petronas and MLNG in the hopes of helping them solve their decarbonization needs, and we feel honored to collaborate with MLNG to meet their Net Zero Carbon Emissions by 2050.”

The project will convert CO2 into industrial-grade syngas (a versatile mixture of carbon monoxide and hydrogen) using HYCO1’s proprietary CUBE Technology. According to the company, its CUBE technology converts nearly 100 percent of CO2 feed at commercial scale.

“Our revolutionary process and catalyst are game changers in decarbonization because not only do we prevent CO2 from being emitted into the atmosphere, but we transform it into highly valuable and usable downstream products,” Carr added in the release.

As part of the MoU, the companies will conduct a feasibility study evaluating design alternatives to produce low-carbon syngas.

The companies say the project is expected to “become one of the largest CO2 utilization projects in history.”

HYCO1 also recently announced that it is providing syngas technology to UBE Corp.'s new EV electrolyte plant in New Orleans. Read more here.

---

This story originally appeared on our sister site, EnergyCapitalHTX.com.