The promotion of drones helps the city of Houston transition to becoming the energy 2.0 capital of the world, says this expert. Photo courtesy

The state of Texas, as well as the rest of the nation, has been intensely impacted by the effects of climate change as well as aging utility infrastructure. Innovative drone technologies help address the pressing inspection and mapping needs of utilities and other critical infrastructure across the country, primarily bridges and roads, railways, pipelines, and powerplants.

There is a significant need for high-precision inspection services in today's market. Additional work will result if the proposed infrastructure bill passes. The bill has $73 billion earmarked toward modernizing the nation's electricity grid. Drone —or UAS (unmanned aerial systems)— technological advances, including thermal imaging, LiDAR (light detection and ranging), IRR (infrared radiation and remote sensing), and AI/ML (artificial intelligence/machine learning) are applied toward determining and predicting trends and are instrumental toward making our country safer.

"The newest advances in drone technology are not so much in the drones themselves, but rather, in the sensors and cameras, such as thermal cameras. Technologies such as LiDAR are now more cost-effective. The newer sensors permit the drones to operate in tighter spaces and cover more acreage in less time, with higher accuracy and fidelity", according to Will Paden, president of Soaring Eagle Technologies, a Houston-based tech-enabled imaging company servicing utility and energy companies.

Paden anticipates growth in the use of the technology for critical infrastructure including utilities, pipelines, power plants, bridges, buildings, railways, and more, for routine and post-storm inspections

"[Soaring Eagle's] ability to harness UAS technology to efficiently retrieve field data across our 8,000+ square mile area is unprecedented. Coupling this data with post-processing methods such as asset digitization unlocked a plethora of opportunities to visualize system resources and further analyze the surrounding terrain and environment," says Paige Richardson, GIS specialist with Navopache Electric Cooperative. "Our engineering and operations departments now have the ability to view 3D substation models, abstract high-resolution digital evaluation models, and apply these newfound resources as they work on future construction projects."

The promotion of drones helps the city of Houston transition to becoming the energy 2.0 capital of the world. The UAS (unmanned aerial systems) technology offers an environmentally cleaner option for routine and post-storm inspections, replacing the use of fossil fuels consumed by helicopters. The use of drones versus traditional inspection systems is significantly safer, more efficient and accurate than traditional alternatives such as scaffolding or bucket trucks. Mapping and inspection work can be done at much lower costs than with manned aircraft operations. These are highly technical flights, where the focus on safety and experience flying both manned and unmanned aircraft, is paramount.

There is much work ahead in high-tech drone technology services, especially for companies vetted by the FAA with high safety standards. According to one study, the overall drone inspection & monitoring market is projected to grow from USD 9.1 billion in 2021 to USD 33.6 billion by 2030, at a CAGR of 15.7 percent from 2021 to 2030. North America is estimated to account for the largest share of the drone inspection & monitoring market from 2021 to 2030.

Paden predicts the use of machine learning/artificial intelligence (ML/AI) and data automation will continue to improve over the next 3-5 years, as more data is collected and analyzed and the technology is a applied to "teach it" to detect patterns and anomalies. He anticipates ML/AI will filter out the amount of data the end users will need to view to make decisions saving time and money for the end users.

Learn more at the Energy Drone & Robotics Summit taking place in The Woodlands on October 25 through October 27.

------

Alex Danielides is head of business development for Houston-based Iapetus Holdings, a privately held, minority and veteran-owned portfolio of energy and utility services businesses. One of the companies is Soaring Eagle Technologies.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.