Matthew Lamont is managing director at DownUnder GeoSolutions' which just opened its new, powerful data center west of Houston. Courtesy of DUG

DownUnder GeoSolutions has officially opened its new data centre in Skybox Houston in Katy, Texas. It's being billed as one of the most powerful supercomputers on earth.

The center, which houses DUG's geophysical cloud service, DUG McCloud, celebrated its grand opening on Thursday, May 16. The company's data hall has 15 megawatts of power and resides in a building designed to withstand hurricane-force winds up to 190 mph.

A second, identical hall is already planned to be built out later this year. Together, the two machines will have a capacity of 650 petaflop, which is a measurement of computing speed that's equal to one thousand million million floating-point operations per second.

In addition to the second hall, DUG is working to build another giant computing system with exaflop capacity — a billion billion calculations per second — by 2021.

"We are in a race to build the first exascale supercomputing system," says Phil Schwan, CTO for DUG, in a news release.

Australia-based DUG first started construction on Bubba, the nickname for the machine, last year and chose Skybox Datacenters as the facility to put Bubba in after a global search. The supercomputer landing in Houston represented the largest data center transaction in the Houston area's history. Dallas-Fort Worth, Austin, and San Antonio have long overshadowed Houston as hotspots for data center activity in Texas.

An differentiating asset of Bubba is the cooling process, which reduces energy usage and costs. Thirteen miles of pipes connect the hard drives to 20-foot cooling towers. Bubba uses "its own patented immersion system that submerges the computer nodes in more than 700 specially-designed tanks filled with polyalphaolefin dielectric fluid," according to the release.

"The complete DUG Insight software suite is available, and is fully-optimised to run on the cloud," says DUG's managing director, Matthew Lamont.

DUG's device is based on Intel® Xeon® processors, and the company uses Intel's technology to enhance its services, and there are more than 40,000 Intel Xeon processor nodes within the DUG McCloud network.

"The close collaboration between our two companies ensures DUG customers have access to the compute resources needed to obtain more meaningful insights from the geophysical landscapes they are exploring," says Trish Damkroger, vice president and general manager of Intel's Extreme Computing Organization, in a release.

"The Bubba supercomputer is a tremendous addition to the DUG McCloud network, and we look forward to our continued collaboration to build even more powerful systems to help accelerate this research and development."

Super-sized supercomputer

Natalie Harms/InnovationMap

Bubba, as the machine is called, has 15 megawatts of power and resides in a building designed to withstand hurricane-force winds up to 190 mph.

DownUnder GeoSolutions, which has its U.S. headquarters in Houston, is getting ready to flip the switch on what is being billed as the world's fastest supercomputer. Photo via DUG.com

World's fastest supercomputer is getting ready to power on in Houston

Booting up

An Australian company that provides geoscience and tech services to the oil and gas industry is gearing up to flip the switch in Katy on what's being billed as the world's fastest supercomputer.

At the 20-acre Skybox Houston data center campus in the Energy Corridor, DownUnder GeoSolutions is assembling a 15-megawatt data center that will house more than 40,000 servers to create the world's fastest supercomputer. Houston is the U.S. headquarters for DUG.

The data center will power a cloud computing service, known as DUG McCloud, that's tailored to the geosciences sector. The company says DUG McCloud will supply "enormous" computing capacity and high-performance storage for DUG's cloud business.

Construction on DUG McCloud — which has been delayed due to recent heavy rains — is set to be completed in April, according to the company's blog.

"DUG McCloud will be available to external companies to expand their computational resources on demand," the company says on its blog. "In addition, the cloud service will give clients access to DUG's proprietary software, with the option of source code, to accelerate their research, development, and production."

DUG McCloud is being touted as the world's biggest cloud computing service for the oil and gas industry. Among its prospective clients are global oil companies, government-owned oil producers, seismic contractors, and data companies.

"DUG McCloud is offering a wide range of companies the opportunity to significantly accelerate their oil and gas projects with cutting-edge geophysical software, stacked with extraordinary supercomputer power and services," Mick Lambert, the newly hired manager of DUG McCloud, said in December.

So, just how extraordinary will DUG's new supercomputer be?

DUG's equipment — contained in a building designed to withstand hurricane-force winds up to 190 mph — will offer more than 250 single-precision petaflops of computing speed, or 250,000 trillion calculations per second.

For now, the world's fastest supercomputer is Summit, a collaboration between the U.S. Department of Energy and IBM. Its top speed is 200 petaflops. Summit operates at Oak Ridge National Laboratory in Tennessee.

Over the long term, DUG envisions its data center being able to handle exascale computing, capable of generating at least 1 quintillion calculations per second. A quintillion has twice as many zeroes as a billion does. China is set to debut the world's first exascale supercomputer in 2020 — a year ahead of the first one to be established in the U.S., a $500 million public-private project called Aurora being developed by the Department of Energy and Intel.

DUG's deal for its data center in Katy represents the largest data center transaction in the Houston area's history. Dallas-Fort Worth, Austin, and San Antonio have long overshadowed Houston as hotspots for data center activity in Texas.

Matthew Lamont, co-founder of DUG, said in October that the company conducted an "exhaustive" search for the data center. "Houston was a natural choice," he said, "given the low cost of power and the fact that Skybox had the available infrastructure ready to go."

A unique feature of DUG's data center is how the servers will be cooled. The company's patent-pending DUG Cool system will immerse all of the servers in custom-designed tanks filled with an environmentally friendly cooling fluid.

DUG says this fluid enables condensed water-cooling chillers to be used to cool the servers, rather than server fans and refrigeration units. This will reduce energy consumption by 45 percent compared with traditional air-cooled systems, according to DUG.

"We like to call it the greenest cloud service in the world," Lamont said on DUG's blog. "DUG McCloud certainly offers more than just a silver lining."

The DUG center represents about 65 percent of the 23 megawatts of data center space under construction in the Houston area, according to a new report from commercial real estate services company CBRE.

"As high-performance computing continues to grow in importance to the energy sector, it is likely that additional latency-sensitive deployments will grow in the Houston market," Haynes Strader, senior associate at CBRE, says in a news release.

"Latency-sensitive" refers to the need for technology to act quickly in response to various events.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”

Axiom Space wins NASA contract for fifth private mission, lands $350M in financing

ready for takeoff

Editor's note: This story has been updated to include information about Axiom's recent funding.

Axiom Space, a Houston-based space infrastructure company that’s developing the first commercial space station, has forged a deal with NASA to carry out the fifth civilian-staffed mission to the International Space Station.

Axiom Mission 5 is scheduled to launch in January 2027, at the earliest, from NASA’s Kennedy Space Center in Florida. The crew of non-government astronauts is expected to spend up to 14 days docked at the International Space Station (ISS). Various science and research activities will take place during the mission.

The crew for the upcoming mission hasn’t been announced. Previous Axiom missions were commanded by retired NASA astronauts Michael López-Alegría, the company’s chief astronaut, and Peggy Whitson, the company’s vice president of human spaceflight.

“All four previous [Axiom] missions have expanded the global community of space explorers, diversifying scientific investigations in microgravity, and providing significant insight that is benefiting the development of our next-generation space station, Axiom Station,” Jonathan Cirtain, president and CEO of Axiom, said in a news release.

As part of Axiom’s new contract with NASA, Voyager Technologies will provide payload services for Axiom’s fifth mission. Voyager, a defense, national security, and space technology company, recently announced a four-year, $24.5 million contract with NASA’s Johnson Space Center in Houston to provide mission management services for the ISS.

Axiom also announced today, Feb. 12, that it has secured $350 million in a financing round led by Type One Ventures and Qatar Investment Authority.

The company shared in a news release that the funding will support the continued development of its commercial space station, known as Axiom Station, and the production of its Axiom Extravehicular Mobility Unit (AxEMU) under its NASA spacesuit contract.

NASA awarded Axiom a contract in January 2020 to create Axiom Station. The project is currently underway.

"Axiom Space isn’t just building hardware, it’s building the backbone of humanity’s next era in orbit," Tarek Waked, Founding General Partner at Type One Ventures, said in a news release. "Their rare combination of execution, government trust, and global partnerships positions them as the clear successor-architect for life after the ISS. This is how the United States continues to lead in space.”

Houston edtech company closes oversubscribed $3M seed round

fresh funding

Houston-based edtech company TrueLeap Inc. closed an oversubscribed seed round last month.

The $3.3 million round was led by Joe Swinbank Family Limited Partnership, a venture capital firm based in Houston. Gamper Ventures, another Houston firm, also participated with additional strategic partners.

TrueLeap reports that the funding will support the large-scale rollout of its "edge AI, integrated learning systems and last-mile broadband across underserved communities."

“The last mile is where most digital transformation efforts break down,” Sandip Bordoloi, CEO and president of TrueLeap, said in a news release. “TrueLeap was built to operate where bandwidth is limited, power is unreliable, and institutions need real systems—not pilots. This round allows us to scale infrastructure that actually works on the ground.”

True Leap works to address the digital divide in education through its AI-powered education, workforce systems and digital services that are designed for underserved and low-connectivity communities.

The company has created infrastructure in Africa, India and rural America. Just this week, it announced an agreement with the City of Kinshasa in the Democratic Republic of Congo to deploy a digital twin platform for its public education system that will allow provincial leaders to manage enrollment, staffing, infrastructure and performance with live data.

“What sets TrueLeap apart is their infrastructure mindset,” Joe Swinbank, General Partner at Joe Swinbank Family Limited Partnership, added in the news release. “They are building the physical and digital rails that allow entire ecosystems to function. The convergence of edge compute, connectivity, and services makes this a compelling global infrastructure opportunity.”

TrueLeap was founded by Bordoloi and Sunny Zhang and developed out of Born Global Ventures, a Houston venture studio focused on advancing immigrant-founded technology. It closed an oversubscribed pre-seed in 2024.