Matthew Lamont is managing director at DownUnder GeoSolutions' which just opened its new, powerful data center west of Houston. Courtesy of DUG

DownUnder GeoSolutions has officially opened its new data centre in Skybox Houston in Katy, Texas. It's being billed as one of the most powerful supercomputers on earth.

The center, which houses DUG's geophysical cloud service, DUG McCloud, celebrated its grand opening on Thursday, May 16. The company's data hall has 15 megawatts of power and resides in a building designed to withstand hurricane-force winds up to 190 mph.

A second, identical hall is already planned to be built out later this year. Together, the two machines will have a capacity of 650 petaflop, which is a measurement of computing speed that's equal to one thousand million million floating-point operations per second.

In addition to the second hall, DUG is working to build another giant computing system with exaflop capacity — a billion billion calculations per second — by 2021.

"We are in a race to build the first exascale supercomputing system," says Phil Schwan, CTO for DUG, in a news release.

Australia-based DUG first started construction on Bubba, the nickname for the machine, last year and chose Skybox Datacenters as the facility to put Bubba in after a global search. The supercomputer landing in Houston represented the largest data center transaction in the Houston area's history. Dallas-Fort Worth, Austin, and San Antonio have long overshadowed Houston as hotspots for data center activity in Texas.

An differentiating asset of Bubba is the cooling process, which reduces energy usage and costs. Thirteen miles of pipes connect the hard drives to 20-foot cooling towers. Bubba uses "its own patented immersion system that submerges the computer nodes in more than 700 specially-designed tanks filled with polyalphaolefin dielectric fluid," according to the release.

"The complete DUG Insight software suite is available, and is fully-optimised to run on the cloud," says DUG's managing director, Matthew Lamont.

DUG's device is based on Intel® Xeon® processors, and the company uses Intel's technology to enhance its services, and there are more than 40,000 Intel Xeon processor nodes within the DUG McCloud network.

"The close collaboration between our two companies ensures DUG customers have access to the compute resources needed to obtain more meaningful insights from the geophysical landscapes they are exploring," says Trish Damkroger, vice president and general manager of Intel's Extreme Computing Organization, in a release.

"The Bubba supercomputer is a tremendous addition to the DUG McCloud network, and we look forward to our continued collaboration to build even more powerful systems to help accelerate this research and development."

Super-sized supercomputer

Natalie Harms/InnovationMap

Bubba, as the machine is called, has 15 megawatts of power and resides in a building designed to withstand hurricane-force winds up to 190 mph.

DownUnder GeoSolutions, which has its U.S. headquarters in Houston, is getting ready to flip the switch on what is being billed as the world's fastest supercomputer. Photo via DUG.com

World's fastest supercomputer is getting ready to power on in Houston

Booting up

An Australian company that provides geoscience and tech services to the oil and gas industry is gearing up to flip the switch in Katy on what's being billed as the world's fastest supercomputer.

At the 20-acre Skybox Houston data center campus in the Energy Corridor, DownUnder GeoSolutions is assembling a 15-megawatt data center that will house more than 40,000 servers to create the world's fastest supercomputer. Houston is the U.S. headquarters for DUG.

The data center will power a cloud computing service, known as DUG McCloud, that's tailored to the geosciences sector. The company says DUG McCloud will supply "enormous" computing capacity and high-performance storage for DUG's cloud business.

Construction on DUG McCloud — which has been delayed due to recent heavy rains — is set to be completed in April, according to the company's blog.

"DUG McCloud will be available to external companies to expand their computational resources on demand," the company says on its blog. "In addition, the cloud service will give clients access to DUG's proprietary software, with the option of source code, to accelerate their research, development, and production."

DUG McCloud is being touted as the world's biggest cloud computing service for the oil and gas industry. Among its prospective clients are global oil companies, government-owned oil producers, seismic contractors, and data companies.

"DUG McCloud is offering a wide range of companies the opportunity to significantly accelerate their oil and gas projects with cutting-edge geophysical software, stacked with extraordinary supercomputer power and services," Mick Lambert, the newly hired manager of DUG McCloud, said in December.

So, just how extraordinary will DUG's new supercomputer be?

DUG's equipment — contained in a building designed to withstand hurricane-force winds up to 190 mph — will offer more than 250 single-precision petaflops of computing speed, or 250,000 trillion calculations per second.

For now, the world's fastest supercomputer is Summit, a collaboration between the U.S. Department of Energy and IBM. Its top speed is 200 petaflops. Summit operates at Oak Ridge National Laboratory in Tennessee.

Over the long term, DUG envisions its data center being able to handle exascale computing, capable of generating at least 1 quintillion calculations per second. A quintillion has twice as many zeroes as a billion does. China is set to debut the world's first exascale supercomputer in 2020 — a year ahead of the first one to be established in the U.S., a $500 million public-private project called Aurora being developed by the Department of Energy and Intel.

DUG's deal for its data center in Katy represents the largest data center transaction in the Houston area's history. Dallas-Fort Worth, Austin, and San Antonio have long overshadowed Houston as hotspots for data center activity in Texas.

Matthew Lamont, co-founder of DUG, said in October that the company conducted an "exhaustive" search for the data center. "Houston was a natural choice," he said, "given the low cost of power and the fact that Skybox had the available infrastructure ready to go."

A unique feature of DUG's data center is how the servers will be cooled. The company's patent-pending DUG Cool system will immerse all of the servers in custom-designed tanks filled with an environmentally friendly cooling fluid.

DUG says this fluid enables condensed water-cooling chillers to be used to cool the servers, rather than server fans and refrigeration units. This will reduce energy consumption by 45 percent compared with traditional air-cooled systems, according to DUG.

"We like to call it the greenest cloud service in the world," Lamont said on DUG's blog. "DUG McCloud certainly offers more than just a silver lining."

The DUG center represents about 65 percent of the 23 megawatts of data center space under construction in the Houston area, according to a new report from commercial real estate services company CBRE.

"As high-performance computing continues to grow in importance to the energy sector, it is likely that additional latency-sensitive deployments will grow in the Houston market," Haynes Strader, senior associate at CBRE, says in a news release.

"Latency-sensitive" refers to the need for technology to act quickly in response to various events.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

5 Houston scientists named winners of prestigious Hill Prizes 2026

prized research

Five Houston scientists were recognized for their "high-risk, high-reward ideas and innovations" by Lyda Hill Philanthropies and the Texas Academy of Medicine, Engineering, Science and Technology (TAMEST).

The 2026 Hill Prizes provide seed funding to top Texas researchers. This year's prizes were given out in seven categories, including biological sciences, engineering, medicine, physical sciences, public health and technology, and the new artificial intelligence award.

Each recipient’s institution or organization will receive $500,000 in direct funding from Dallas-based Lyda Hill Philanthropies. The organization has also committed to giving at least $1 million in discretionary research funding on an ad hoc basis for highly-ranked applicants who were not selected as recipients.

“It is with great pride that I congratulate this year’s Hill Prizes recipients. Their pioneering spirit and unwavering dedication to innovation are addressing some of the most pressing challenges of our time – from climate resilience and energy sustainability to medical breakthroughs and the future of artificial intelligence,” Lyda Hill, founder of Lyda Hill Philanthropies, said in a news release.

The 2026 Houston-area recipients include:

Biological Sciences: Susan M. Rosenberg, Baylor College of Medicine

Rosenberg and her team are developing ways to fight antibiotic resistance. The team will use the funding to screen a 14,000-compound drug library to identify additional candidates, study their mechanisms and test their ability to boost antibiotic effectiveness in animal models. The goal is to move toward clinical trials, beginning with veterans suffering from recurrent infections.

Medicine: Dr. Raghu Kalluri, The University of Texas MD Anderson Cancer Center

Kalluri is developing eye drops to treat age-related macular degeneration (AMD), the leading cause of vision loss globally. Kalluri will use the funding to accelerate studies and support testing for additional ocular conditions. He was also named to the National Academy of Inventors’ newest class of fellows last month.

Engineering: Naomi J. Halas, Rice University

Co-recipeints: Peter J. A. Nordlander and Hossein Robatjazi, Rice University

Halas and her team are working to advance light-driven technologies for sustainable ammonia synthesis. The team says it will use the funding to improve light-driven catalysts for converting nitrogen into ammonia, refine prototype reactors for practical deployment and partner with industry collaborators to advance larger-scale applications. Halas and Nordlander are co-founders of Syzygy Plasmonics, and Robatjazi serves as vice president of research for the company.

The other Texas-based recipients include:

  • Artificial Intelligence: Kristen Grauman, The University of Texas at Austin
  • Physical Sciences: Karen L. Wooley, Texas A&M University; Co-Recipient: Matthew Stone, Teysha Technologies
  • Public Health: Dr. Elizabeth C. Matsui, The University of Texas at Austin and Baylor College of Medicine
  • Technology: Kurt W. Swogger, Molecular Rebar Design LLC; Co-recipients: Clive Bosnyak, Molecular Rebar Design, and August Krupp, MR Rubber Business and Molecular Rebar Design LLC

Recipients will be recognized Feb. 2 during the TAMEST 2026 Annual Conference in San Antonio. They were determined by a committee of TAMEST members and endorsed by a committee of Texas Nobel and Breakthrough Prize Laureates and approved by the TAMEST Board of Directors.

“On behalf of TAMEST, we are honored to celebrate the 2026 Hill Prizes recipients. These outstanding innovators exemplify the excellence and ambition of Texas science and research,” Ganesh Thakur, TAMEST president and a distinguished professor at the University of Houston, added in the release. “Thanks to the visionary support of Lyda Hill Philanthropies, the Hill Prizes not only recognize transformative work but provide the resources to move bold ideas from the lab to life-changing solutions. We are proud to support their journeys and spotlight Texas as a global hub for scientific leadership.”

Investment bank opens new Houston office focused on energy sector

Investment bank Cohen & Co. Capital Markets has opened a Houston office to serve as the hub of its energy advisory business and has tapped investment banking veteran Rahul Jasuja as the office’s leader.

Jasuja joined Cohen & Co. Capital Markets, a subsidiary of financial services company Cohen & Co., as managing director, and head of energy and energy transition investment banking. Cohen’s capital markets arm closed $44 billion worth of deals last year.

Jasuja previously worked at energy-focused Houston investment bank Mast Capital Advisors, where he was managing director of investment banking. Before Mast Capital, Jasuja was director of energy investment banking in the Houston office of Wells Fargo Securities.

“Meeting rising [energy] demand will require disciplined capital allocation across traditional energy, sustainable fuels, and firm, dispatchable solutions such as nuclear and geothermal,” Jasuja said in a news release. “Houston remains the center of gravity where capital, operating expertise, and execution come together to make that transition investable.”

The Houston office will focus on four energy verticals:

  • Energy systems such as nuclear and geothermal
  • Energy supply chains
  • Energy-transition fuel and technology
  • Traditional energy
“We are making a committed investment in Houston because we believe the infrastructure powering AI, defense, and energy transition — from nuclear to rare-earth technology — represents the next secular cycle of value creation,” Jerry Serowik, head of Cohen & Co. Capital Markets, added in the release.

---

This article originally appeared on EnergyCaptialHTX.com.

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”