UH is now the only college in the country — and the only restaurant facility in Houston — to utilize a robotic food delivery. Photo courtesy of the University of Houston

The University of Houston is taking a bold step — or, in this case, roll — in foodservice delivery. UH's Conrad N. Hilton College of Global Hospitality Leadership is now deploying a robot server in Eric’s Restaurant at its Hilton College.

Booting up this new service is major bragging rights for the Coogs, as UH is now the only college in the country — and the only restaurant facility in Houston — to utilize a robotic food delivery.

These rolling delivery bots come from the state-of-the-art food service robot called Servi. The bots, created by Bear Robotics, are armed with LiDar sensors, cameras, and trays, and automatically return to their posts when internal weight sensors detect a delivery has been completed.

Not surprisingly, these futuristic food staffers are booting up plenty of buzz at UH.

“People are excited about it,” says Dennis Reynolds, who is dean of the Conrad N. Hilton College of Global Hospitality Leadership and oversees the only hospitality program in the world where students work and take classes in an internationally branded, full-service hotel. Launching robot waitstaff at UH as a test market makes sense, he notes, for practical use and larger implications.

The Servi robots deliver food from the kitchen to the table. Photo courtesy of the University of Houston

“Robotics and the general fear of technology we see today are really untested in the restaurant industry,” he says in an announcement. “At Hilton College, it’s not just about using tomorrow’s technology today. We always want to be the leader in learning how that technology impacts the industry.”

Bear Robotics, a tech company founded by restaurant experts and tech entrepreneurs, hosted a Servi showcase at the National Restaurant Show in Chicago earlier this year. After seeing the demo, Reynolds was hooked. UH's Servi robot arrived at Eric’s Restaurant in October.

Before sending the bot to diners' tables, the bot was prepped by Tanner Lucas, the executive chef and foodservice director at Eric’s. That meant weeks of mapping, programming, and — not surprisingly — “test driving” around the restaurant.

Tanner even created a digital map of the restaurant to teach the Servi its pathways and designated service points, such as table numbers. “Then, we sent it back and forth to all of those points from the kitchen with food to make sure it wouldn’t run into anything," he adds.

But does having a robot deliver food create friction between human and automated staff? Not at Eric's. “The robot helps my workflow,” Joel Tatum, a server at Eric’s says. “It lets me spend more time with my customers instead of just chasing and running food.”

Once loaded, the kitchen staff can tell the Servi robots where to take the dishes. Photo courtesy of the University of Houston

Reynolds believes robots will complement their human counterparts and actually enhance the customer experience, even in unlikely settings.

“Studies have been conducted in senior living facilities where you might think a robot wouldn’t be well received, but it’s been just the opposite,” Reynolds says. “Those residents saw the change in their lives and loved it.”

To that end, he plans to use Servi bots in other UH venues. “The ballroom would be a fantastic place to showcase Servi – not as a labor-saving device, but as an excitement generator,” Reynolds notes. “To have it rotating through a big event delivering appetizers would be really fun.”

Critics who denounce robot servers and suggest they will soon displace humans are missing the point, Reynolds adds. “This isn’t about cutting our labor costs. It’s about building our top-line revenues and expanding our brand as a global hospitality innovator,” Reynolds says. “People will come to expect more robotics, more artificial intelligence in all segments of hospitality, and our students will be right there at the forefront.”

Servi bots come at a time of dynamic growth for Hilton College. A recent rebrand to “Global Hospitality Leadership” comes as the college hotel is undergoing a $30 million expansion and renovation, which includes a new five-story, 70-room guest tower. The student-run Cougar Grounds coffeehouse reopened this semester in a larger space with plenty of updates. The neighboring Eric’s Club Center for Student Success helps with recruitment and enrollment, undergraduate academic services, and career development.

“To be the first university in the country to introduce robotics in the dining room is remarkable,” Reynolds adds. “There are a lot of unique things we’re doing at Hilton College.”

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.