Houston-based PolyVascular won the American Heart Association’s annual Health Tech Competition. Courtesy of TMC Innovation

Houston-based PolyVascular, which develops minimally invasive solutions for children with congenital heart disease, was named the overall winner of the American Heart Association’s annual Health Tech Competition earlier this month.

The company was founded in 2014 by Dr. Henri Justino and Daniel Harrington and was part of TMCi's 2017 medical device cohort. It is developing the first polymer-based transcatheter pulmonary valve designed specifically for young children, allowing for precise sizing and redilation as the child grows while also avoiding degradation. PolyVascular has completed preclinical studies and is working toward regulatory submissions, an early feasibility study and its first-in-human clinical trial thanks to a recent SBIR grant from the National Heart, Lung, and Blood Institute.

With the new AHA honor, PolyVascular will be invited to join the association’s Center for Health Technology & Innovation Innovators’ Network, which connects entrepreneurs, providers and researchers to share and advance innovation in cardiovascular and brain health.

“This is a tremendous honor for PolyVascular—we’re especially proud to bring hope to families and children living with congenital heart defects,” Justino said in a news release. “Our technology—a minimally invasive valve that can be expanded over time to grow with the child—has the potential to dramatically reduce the need for repeated open-heart surgeries.”

The Health Tech Competition is a live forum for health care innovators to present their digital solutions for treating or preventing cardiovascular diseases and stroke.

Finalists from around the world addressed heart failure, hypertension, congenital heart defects and other issues that exist in cardiovascular, brain and metabolic health. Solutions were evaluated on the criteria of validity, scientific rigor and impact.

The judges included Texas-based Dr. Eric D. Peterson, professor of medicine in the division of cardiology at UT Southwestern Medical Center, and Dr. Asif Ali, clinical associate professor of cardiovascular medicine at the University of Texas Medical School in Houston and director at Cena Research Institute.

According to the American Heart Association, nearly half of U.S. adults live with some form of cardiovascular disease or stroke.

“The American Heart Association plays a pivotal role in advancing innovative care pathways, and we’re excited that our solution aligns with its guidelines and mission,” Justino said in a news release. “It’s time these life-changing technologies reach the youngest patients, just as they already do for adults.”

CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding. Photo via Getty Images

University of Houston-founded company secures $2.5M in NIH grant funding

all in the timing

You could say that the booming success of Houston biotech company CellChorus owes very much to auspicious TIMING. Those six letters stand for Time-lapse Imaging Microscopy In Nanowell Grids, a platform for dynamic single-cell analysis.

This week, CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding from the National Center for Advancing Translational Sciences (NCATS) at the National Institute of Health. A $350,000 Phase I grant is already underway. Once predetermined milestones are achieved, this will lead to a two-year $2.1 million Phase II grant.

The TIMING platform was created by UH Single Cell Lab researchers Navin Varadarajan and Badri Roysam. TIMING generates high-throughput in-vitro assays that quantitatively profile interactions between cells on a large scale, particularly what happens when immune cells confront target cells. This has been especially useful in the realm of immuno-oncology, where it has demonstrated its power in designing novel therapies, selecting lead candidates for clinical trials and evaluating the potency of manufactured cells.

“By combining AI, microscale manufacturing and advanced microscopy, the TIMING platform yields deep insight into cellular behaviors that directly impact human disease and new classes of therapeutics,” says Rebecca Berdeaux, chief scientific officer at CellChorus. “The generous support of NCATS enables our development of computational tools that will ultimately integrate single-cell dynamic functional analysis of cell behavior with intracellular signaling events.”

Houston’s CellChorus Innovation Lab supports both the further development of TIMING and projects for early-access customers. Those customers include top-25 biopharmaceutical companies, venture-backed biotechnology companies, a leading comprehensive cancer center and a top pediatric hospital, says CEO Daniel Meyer.

CellChorus’s publications include papers written in collaboration with researchers from the Baylor College of Medicine, Houston Methodist, MD Anderson, Texas Children’s Hospital, the University of Texas and UTHealth in journals including Nature Cancer, Journal of Clinical Investigation and The Journal for ImmunoTherapy of Cancer.

The new Small Business Technology Transfer (STTR) award will specifically support the development of a scalable integrated software system conceived with the goal of analyzing cells that are not fluorescently labeled. This label-free analysis will be based on new AI and machine learning (ML) models trained on tens of millions of images of cells.

“This is an opportunity to leverage artificial intelligence methods for advancing the life sciences,” says Roysam. “We are especially excited about its applications to advancing cell-based immunotherapy to treat cancer and other diseases.”

The Houston-born-and-bred company couldn’t have a more appropriate home, says Meyer.

“Houston is a premier location for clinical care and the development of biotechnology and life sciences technologies. In particular, Houston has established itself as a leader in the development and delivery of immune cell-based therapies,” the CEO explains. “As a spin-out from the Single Cell Lab at the University of Houston, we benefit from working with world-class experts at local institutions.”

In May, the company received a similar $2.5 million SBIR grant from NCATS at the NIH. Also this summer, CellChorus's technology was featured in Nature Cancer.

This uniquely Houston technology is an AI program that allows scientists to understand the functions of cells by evaluating cell activation, killing, and movement. Photo via Getty Images

University of Houston lab reports breakthrough in cancer-detecting technology

making moves

T-cell immunotherapy is all the rage in the world of fighting cancer. A Houston company’s researchers have discovered a new subset of T cells that could be a game changer for patients.

CellChorus is a spinoff of Navin Varadarajan’s Single Cell Lab, part of the University of Houston’s Technology Bridge. The lab is the creator of TIMING, or Time-lapse Imaging Microscopy In Nanowell Grids. It’s a visual AI program that allows scientists to understand the functions of cells by evaluating cell activation, killing, and movement.

Last month, Nature Cancer published a paper co-authored by Varadarajan entitled, “Identification of a clinically efficacious CAR T cell subset in diffuse large B cell lymphoma by dynamic multidimensional single-cell profiling.”

“Our results showed that a subset of T cells, labeled as CD8-fit T cells, are capable of high motility and serial killing, found uniquely in patients with clinical response,” says first author and recent UH graduate Ali Rezvan in Nature Cancer.

Besides him and Varadarajan, contributors hail from Baylor College of Medicine/Texas Children’s Hospital, MD Anderson Cancer Center, Kite Pharma, and CellChorus itself.

The team identified the CD80-fit T cells using TIMING to examine interactions between T cells and tumor cells across thousands of individual cells. They were able to integrate the results using single-cell RNA sequencing data.

T-cell therapy activates a patient’s own immune system to fight cancer cells, but not every patient responds favorably to it. Identifying CD8-fit cells could be the key to manufacturing clinical response even in those for whom immunotherapy hasn’t been effective.

“This work illustrates the excellence of graduate students Ali Rezvan and Melisa Montalvo; and post-doctoral researchers Melisa Martinez-Paniagua and Irfan Bandey among others,” says Varadarajan in a statement.

Earlier last month, CellChorus recently received a $2.5 million SBIR grant. The money allows the company to share TIMING more widely, facilitating even more landmark discoveries like CD8-fit cells.

CellChorus created a visualization AI program that helps scientists to better understand the functioning of cells, including their activation, killing and movement. Photo via Getty Images

Houston health tech startup scores $2.5M SBIR grant to advance unique cell therapy AI technology

fresh funding

A Houston biotech company just announced a new award of $2.5 million.

CellChorus, a spinoff of the Single Cell Lab at the University of Houston, announced the fresh funding, which comes from an SBIR (Small Business Innovation Research) grant from the National Institute of Health (NIH) through its National Center for Advancing Translational Sciences (NCATS).

CellChorus is the business behind a technology called TIMING, which stands for Time-lapse Imaging Microscopy In Nanowell Grids. It’s a visualization AI program that helps scientists to better understand the functioning of cells, including their activation, killing and movement. This more in-depth knowledge of immune cells could be instrumental in developing novel therapies in countless disorders, including cancers and infectious diseases.

“While many cell therapies have been approved and are in development, the industry needs an integrated analytical platform that provides a matrix of functional readouts, including cell phenotype and metabolism on the same cells over time,” Rebecca Berdeaux, vice president of science at CellChorus, says in a press release. “We are grateful to NCATS for its support of the development of application-specific kits that apply dynamic, functional single-cell analysis of immune cell phenotype and function. The product we will develop will increase the impact of these therapies to improve the lives of patients.”

A two-year, $2.1 million Phase II grant will begin after the company achieves predetermined milestones under a $350,000 Phase I grant that is currently taking place. As Berdeaux explained, the funds will be used to develop TIMING kits which will manufacture analytics that provide end-users with rapid, specific and predictive results to accelerate translational research and the development and manufacture of more effective cell therapies.

TIMING is more than a great idea whose time has yet to come. It has already been proven in great depth. In fact, last June, CellChorus CEO Daniel Meyer told InnovationMap that he was initially attracted to the technology because it was “very well validated.” At the time, CellChorus had just announced a $2.3 million SBIR Fast-Track grant from the National Institute of General Medical Sciences. The company also went on to win an award in the Life Science category of the 2023 Houston Innovation Awards.

That confirmation of success comes from more than 200 peer-reviewed papers that describe myriad cell types and types of therapy, all of which used data from TIMING assays. TIMING data has benefited industry leaders in everything from research and clinical development to manufacturing. With the new grant, TIMING will become more widely available to scientists making important discoveries relating to the inner workings of the cells that drive our immunity.

CellChorus, a biotech startup operating out of the University of Houston Technology Bridge, has secured fresh funding. Photo via Getty Images

Houston biotech startup secures $2.3M grant

cha-ching

They say it’s all in the timing. For CellChorus, it’s all in the TIMING. That’s Time-lapse Imaging Microscopy In Nanowell Grids. TIMING is a visual AI program that evaluates cell activation, killing and movement, which allows scientists to better understand how cells function.

The technology is important to the development of novel therapies in the realms of oncology, infectious diseases, and countless other disorders and diseases. By allowing scientists to observe those maladies at their roots, it will enable them to create, and ultimately deliver new medications and other therapies faster, at lower cost, and with a higher success rate.

CellChorus is a spinoff of the Single Cell Lab at the University of Houston. Part of UH’s Technology Bridge, CEO Daniel Meyer connected with co-founder and leader of Single Cell Lab, Navin Varadarajan, through co-founder Laurence Cooper.

“The company had been established, but there were limited operations,” recalls Meyer during a phone call with InnovationMap.

That was the fall of 2020. Now, the team has just announced a $2.3 million SBIR (Small Business Innovation Research) Fast-Track grant from the National Institute of General Medical Sciences.

“This funding will support development of a product offering that builds on the success of our early access laboratory,” Cooper said in a press release. “As the next frontier of cellular analysis, dynamic single-cell analysis will increase the impact that immunotherapies have in improving the lives of patients.”

Meyer is based in the Bay Area, but the rest of the team is in Houston. Meyer has a proven track record as an investor and early stage entrepreneur in life sciences companies, including work as COO of Genospace, which was acquired by HCA Healthcare.

Meyer says that what attracted him to CellChorus was a combination of a clear need for the technology and the fact that it was “very well validated.“

“Developers of immunotherapies need better functional data earlier so that they can develop and deliver better therapies,” he explains.

Another aspect of its appeal was the fact that more than 10 publications featured data from the TIMING platform.

“We’ve had both large and small biopharmas publish data,” says Meyer. “That’s important as well because it shows there’s applicability in both nonprofit and for-profit research.”

Though Meyer himself doesn’t currently live in Houston, he recognizes its importance to CellChorus. He says that it can be difficult for an early stage company to find appropriate lab space, so Technology Bridge was of exceptional importance for CellChorus. Since opening the lab a year and a half ago, Varadarajan and his team have been busy.

“Example projects we have completed include understanding mechanism of action for cell therapy products, selecting lead candidates for T cell engagers, identifying biomarkers of response to cell therapies, and quantifying potency and viability for cell therapy manufacturing technologies,” says Meyer.

And now, CellChorus is collaborating with leaders in the industry.

“These include top-25 biopharmaceutical companies and promising venture-backed biotechnology companies, as well as leading not-for-profit research institutions,” says Meyer in a press release. It’s clear that the TIMING is right for CellChorus to excel.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”