The University of Houston has transformed its Energy Research Park into the Technology Bridge to better connect research-based startups to the market. Natalie Harms/InnovationMap

A few years ago, the University of Houston renamed its Energy Research Park to the Technology Bridge. They wanted to create a program and workspace for companies inside the university to enter into the Houston innovation ecosystem. Turns out, the program also created a bridge for innovative companies entering the Houston market.

Two companies announced that they will open operations in the Technology Bridge — the first Houston offices for both, according to a news release.

Chemicals company Oleon is a subsidiary of France-based Avril, a financial and industrial company. Before the UH location, Oleon's only United States operation was a sales office in South Carolina. The other company is California-based Saratech, an engineering, software, services, and 3D printer sales company. Saratech has offices across the country, including an Austin office. The Houston office will focus on 3D printing.

According to Tom Campbell, executive director of the UH Office of Technology Transfer and Innovation, choosing a university to open a new office in a new market makes a lot of sense. There's a ready-made network of professors and students ripe with talent for internships and new and developing research.

Saratech's senior vice president, Rick Murphy, agrees that the new office can be mutually beneficial to UH and his company. Saratech already has a relationship similar to this with the University of California-Irvine.

"We are looking at universities to help with that, so industry can start educating their engineers to take advantage of this technology," Murphy says in the release.

Oleon also has previous relationships with universities in Europe and Asia. The company, which specializes in natural chemistry — specifically using fats and oils in various applications from cosmetics to automotive, plans on sustaining a lot of growth in Houston. The move represents the first of many instances of growth in the market.

"It is baby steps here, but the U.S. is a huge market," Dave Jacobs, general manager of operations for Oleon Americas, says in the release. "About 50 percent of the oil and gas market is here."

The Technology Bridge houses 23 startups and has 30,000 square feet of incubator space and over 700,000 square feet of space suited for laboratories, pilot-scale facilities, and light manufacturing. The bridge sits on the former Schlumberger campus just south of UH.

To Campbell, the bridge adds its own niche of research and lab space to the Houston innovation ecosystem as a whole, and both these companies' new offices are on par with the greater goals of the bridge.

"It's about economic development," Campbell says in the release. "A strong innovation economy is a rising tide that floats all boats."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."

UH study uncovers sustainable farming methods for hemp production

growth plan

A new University of Houston study of hemp microbes can potentially assist scientists in creating special mixtures of microbes to make hemp plants produce more CBD or have better-quality fibers.

The study, led by Abdul Latif Khan, an assistant professor of biotechnology at the Cullen College of Engineering Technology Division, was published in the journal Scientific Reports from the Nature Publishing Group. The team also included Venkatesh Balan, UH associate professor of biotechnology at the Cullen College of Engineering Technology Division; Aruna Weerasooriya, professor of medicinal plants at Prairie View A&M University; and Ram Ray, professor of agronomy at Prairie View A&M University.

The study examined microbiomes living in and around the roots (rhizosphere) and on the leaves (phyllosphere) of four types of hemp plants. The team at UH compared how these microorganisms differ between hemp grown for fiber and hemp grown for CBD production.

“In hemp, the microbiome is important in terms of optimizing the production of CBD and enhancing the quality of fiber,” Khan said in a news release. “This work explains how different genotypes of hemp harbor microbial communities to live inside and contribute to such processes. We showed how different types of hemp plants have their own special groups of tiny living microbes that help the plants grow and stay healthy.”

The study indicates that hemp cultivation can be improved by better understanding these distinct microbial communities, which impact growth, nutrient absorption, stress resilience, synthesis and more. This could help decrease the need for chemical inputs and allow growers to use more sustainable agricultural practices.

“Understanding these microorganisms can also lead to more sustainable farming methods, using nature to boost plant growth instead of relying heavily on chemicals,” Ahmad, the paper’s first author and doctoral student of Khan’s, said the news release.

Other findings in the study included higher fungal diversity in leaves and stems, higher bacterial diversity in roots and soil, and differing microbiome diversity. According to UH, CBD-rich varieties are currently in high demand for pharmaceutical products, and fiber-rich varieties are used in industrial applications like textiles.