For years, Squid Compression has helped ease the pain of patients in doctor's offices. Now, anyone can get the treatment on the go. Photo via squidgo.com

Many of the estimated 50 million Americans who suffer from chronic pain turn to drugs — including heavily abused opioids — to relieve their symptoms. Houston-based startup Portable Therapeutix LLC's drug-free solution to pain management seeks to put a dent in the market for prescription painkillers.

In 2018, Houston-based Portable Therapeutix introduced Squid Go, a portable device that's designed to ease the pain and swelling of sore joints and muscles. It's a follow-up to the company's Squid Compression, a pain management device launched in 2013 for patients at rehabilitation centers, hospitals, doctor's offices, and the like.

Squid Go enables consumers to apply two approaches — cold therapy and compression therapy — to relieving joint pain and swelling caused by arthritis, bouncing back from athletic activities, or recovering from an injury or surgery involving muscles and joints. Variations of the device can treat ankle, back, leg, knee, shoulder, or wrist pain.

To reap the benefits of Squid Go, a consumer uses the device for just 15 minutes. Squid Go — which combines a cold gel pack with proprietary compression technology — features special air pockets that inflate and deflate, gently massaging the body part needing treatment. That massaging boosts circulation and reduces swelling.

"Increased circulation brings more nutrient- and oxygen-rich blood to the area, promoting recovery," says Sam Stolbun, co-founder of Portable Therapeutix. "Meanwhile, [the] gentle compression also drives the pain-relieving cold from the gel pack deeper into the tissues to alleviate soreness and discomfort."

The coldness of the gel pack fights inflammation.

Stolbun says someone can take the lightweight, portable Squid Go device to the office, to the gym or anywhere else for on-the-go pain relief. It even can be used without the cold gel pack for compression-only therapy to improve circulation and decrease swelling. The Squid Go pump delivers about 15 treatments before it needs to be recharged.

Squid Compression received clearance from the U.S. Food and Drug Administration as a prescription-only device in 2013 and gained over-the-counter status in 2014. The consumer version, Squid Go, employs the same technology and operates the same way as Squid Compression, so a second FDA stamp of approval wasn't required.

Pricing for the heavy-duty Squid Compression system starts at $700. The consumer-friendly Squid Go system goes for $300 or $350, depending on its purpose. Users can buy extra wraps and gel packs to supplement the system.

Stolbun says he and co-founder Shai Schubert developed the Squid devices after realizing that existing pain-fighting cold packs provided only superficial relief, while water-based treatments were inconvenient and offered no compression advantages. Still other cold and compression therapies on the market are expensive and generally aren't covered by health insurance, he says.

Stolbun says that "it became apparent that a reasonably priced, well-made, portable, and effective pain relief and recovery device would meet a need for a broad range of consumers — from athletes to seniors."

Stolbun, a sports enthusiast and bakery mogul, and Schubert, a scientist and entrepreneur, established Portable Therapeutix in 2011.

The company's debut product, Squid Compression, still enjoys success, but Stolbun says the company has shifted its focus to Squid Go. Portable Therapeutix plans to pump up sales for Squid Go via its online presence, he says, as well as through physical therapists, sports trainers and other professionals who've used Squid Compression but want to offer the less pricey Squid Go model to their clients for in-home treatment.

Portable Therapeutix is backed by private investors; the amount of funding it has received isn't available. The company doesn't release revenue and profit figures.

Today, the company employs just one person in Houston but will add workers as its distribution pipeline expands, Stolbun says. Sales, marketing, and customer service representatives are scattered around the country. Stolbun, the CEO, is based in Houston, while Schubert, the chief technical officer, is based in Boston.

Portable Therapeutix relies, in part, on word-of-mouth praise to promote Squid Go. Among those hailing the device is Lee Ward of Houston, who describes himself as a competitive tennis player.

On the Squid Go website, Ward explains that he'd been suffering from progressively worsening tendonitis in his knees for a couple of years.

"I tried a number of remedies, including ice and gel packs, immediately following my tennis workout, but both remedies were ineffective and difficult to use," Ward says in his online testimonial.

He then discovered Squid Go and became a fan.

"The best thing about [Squid Go] is its ease of use. It provides a quick, effective treatment that makes it ideal for daily use by both the serious and recreational athlete," Ward says.

Smart tech

Courtesy of Squid Go

Squid Go combines a cold gel pack with proprietary compression technology and features special air pockets that inflate and deflate, gently massaging the body part needing treatment.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers make headway on affordable, sustainable sodium-ion battery

Energy Solutions

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

---

This story originally appeared on EnergyCapitalHTX.com.

FAA demands investigation into SpaceX's out-of-control Starship flight

Out of this world

The Federal Aviation Administration is demanding an accident investigation into the out-of-control Starship flight by SpaceX on May 27.

Tuesday's test flight from Texas lasted longer than the previous two failed demos of the world's biggest and most powerful rocket, which ended in flames over the Atlantic. The latest spacecraft made it halfway around the world to the Indian Ocean, but not before going into a spin and breaking apart.

The FAA said Friday that no injuries or public damage were reported.

The first-stage booster — recycled from an earlier flight — also burst apart while descending over the Gulf of Mexico. But that was the result of deliberately extreme testing approved by the FAA in advance.

All wreckage from both sections of the 403-foot (123-meter) rocket came down within the designated hazard zones, according to the FAA.

The FAA will oversee SpaceX's investigation, which is required before another Starship can launch.

CEO Elon Musk said he wants to pick up the pace of Starship test flights, with the ultimate goal of launching them to Mars. NASA needs Starship as the means of landing astronauts on the moon in the next few years.

TMC med-tech company closes $2.5M series A, plans expansion

fresh funding

Insight Surgery, a United Kingdom-based startup that specializes in surgical technology, has raised $2.5 million in a series A round led by New York City-based life sciences investor Nodenza Venture Partners. The company launched its U.S. business in 2023 with the opening of a cleanroom manufacturing facility at Houston’s Texas Medical Center.

The startup says the investment comes on the heels of the U.S. Food and Drug Administration (FDA) granting clearance to the company’s surgical guides for orthopedic surgery. Insight says the fresh capital will support its U.S. expansion, including one new manufacturing facility at an East Coast hospital and another at a West Coast hospital.

Insight says the investment “will provide surgeons with rapid access to sophisticated tools that improve patient outcomes, reduce risk, and expedite recovery.”

Insight’s proprietary digital platform, EmbedMed, digitizes the surgical planning process and allows the rapid design and manufacturing of patient-specific guides for orthopedic surgery.

“Our mission is to make advanced surgical planning tools accessible and scalable across the U.S. healthcare system,” Insight CEO Henry Pinchbeck said in a news release. “This investment allows us to accelerate our plan to enable every orthopedic surgeon in the U.S. to have easy access to personalized surgical devices within surgically meaningful timelines.”

Ross Morton, managing Partner at Nodenza, says Insight’s “disruptive” technology may enable the company to become “the leader in the personalized surgery market.”

The startup recently entered a strategic partnership with Ricoh USA, a provider of information management and digital services for businesses. It also has forged partnerships with the Hospital for Special Surgery in New York City, University of Chicago Medicine, University of Florida Health and UAB Medicine in Birmingham, Alabama.