Houston-based Corva, an AI-optimized analytics company, is in the process of hiring — a lot. Photo via corva.ai

While the oil and gas industry may be in store for sluggish growth in 2020, that's hardly the case for Houston-based energy tech startup Corva AI LLC.

Corva — which offers a real-time data analytics platform for drilling and completion (the stage when a well is prepared for production) — added 85 employees last year, mostly in Houston. And it's on track to make 150 new hires in 2020, including software developers, researchers, drilling engineers, and data analysts, says Courtney Diezi, the company's general manager. Two-thirds of this year's new hires will work in Houston, she says.

Diezi says the company's headcount currently stands at 120, with 100 employees in Houston and 20 in Ukraine.

Corva has expanded so much and so quickly that it outgrew its previous 11,000-square-foot office and is now at The Cannon, a coworking space and innovation hub in the Energy Corridor. It's set to move later this year to a new 40,000-square-foot space at The Cannon.

Founded in 2014 by CEO Ryan Dawson, Corva has raised just $3 million in outside funding to propel its growth.

"Our business has grown exponentially at the same pace as companies raising hundreds of millions in funding," Dawson says. "While the startup world has chased endless rounds of funding with the notion of either becoming a unicorn — or dying — we have focused on creating a company that cares deeply about our employees and a business that lasts 100 years."

Dawson describes Corva as the "modern brains" of drillings and completions. Oil and gas equipment sends millions of datapoints to Corva to help make complex decisions about drilling operations, she says. About 40 customers use Corva's technology.

In a 2019 news release, Dawson said Corva gauges its success "by the number of days we save on rigs, the costs we can quantifiably cut, and the number of catastrophic events we prevent." Corva's technology has saved millions of dollars for its customers and reduced the length of drilling projects by as many as three days, he said.

"Corva's challenge is to change the behavior of drillers who work for somebody else," the Journal of Petroleum Technology reported in 2019. "The fast-growing company has no shortage of users. Retaining those customers will require convincing oil companies that the real-time drilling data and analysis is creating enough value to justify the cost."

Corva's user-focused approach to developing technology helps attract and retain customers. Executives say they consider Corva a tech company that operates in the oil and gas sector rather than an oil and gas company that happens to develop software.

"Our software platform rivals Netflix and Twitter in terms of giant datasets and real-time processing," Diezi says. "Without a core expertise and founding team in software, we wouldn't be able to provide the amazing technology we do — it's too central to what we do. Corva is the perfect mixture of oil industry veterans and software whiz kids. Our customers love to work with us because we speak their language but provide world-class products solving hard problems."

As it continues to enlarge its workforce, Corva seeks to foster a workplace that embraces both oil industry veterans and software whiz kids.

"We want to be the most admired workplace in Houston, with a Google-like status both for our amazing products and our company culture," Diezi says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston hospital names leading cancer scientist as new academic head

new hire

Houston Methodist Academic Institute has named cancer clinician and scientist Dr. Jenny Chang as its new executive vice president, president, CEO, and chief academic officer.

Chang was selected following a national search and will succeed Dr. H. Dirk Sostman, who will retire in February after 20 years of leadership. Chang is the director of the Houston Methodist Dr. Mary and Ron Neal Cancer Center and the Emily Herrmann Presidential Distinguished Chair in Cancer Research. She has been with Houston Methodist for 15 years.

Over the last five years, Chang has served as the institute’s chief clinical science officer and is credited with strengthening cancer clinical trials. Her work has focused on therapy-resistant cancer stem cells and their treatment, particularly relating to breast cancer.

Her work has generated more than $35 million in funding for Houston Methodist from organizations like the National Institutes of Health and the National Cancer Institute, according to the health care system. In 2021, Dr. Mary Neal and her husband Ron Neal, whom the cancer center is now named after, donated $25 million to support her and her team’s research on advanced cancer therapy.

In her new role, Chang will work to expand clinical and translational research and education across Houston Methodist in digital health, robotics and bioengineered therapeutics.

“Dr. Chang’s dedication to Houston Methodist is unparalleled,” Dr. Marc L. Boom, Houston Methodist president and CEO, said in a news release. “She is committed to our mission and to helping our patients, and her clinical expertise, research innovation and health care leadership make her the ideal choice for leading our academic mission into an exciting new chapter.”

Chang is a member of the American Association of Cancer Research (AACR) Stand Up to Cancer Scientific Advisory Council. She earned her medical degree from Cambridge University in England and completed fellowship training in medical oncology at the Royal Marsden Hospital/Institute for Cancer Research. She earned her research doctorate from the University of London.

She is also a professor at Weill Cornell Medical School, which is affiliated with the Houston Methodist Academic Institute.

Texas A&M awarded $1.3M federal grant to develop clean energy tech from electronic waste

seeing green

Texas A&M University in College Station has received a nearly $1.3 million federal grant for development of clean energy technology.

The university will use the $1,280,553 grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste.

Rare earth elements (REEs) are a set of 17 metallic elements.

“REEs are essential components of more than 200 products, especially high-tech consumer products, such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-screen monitors and televisions,” according to the Eos news website.

REEs also are found in defense equipment and technology such as electronic displays, guidance systems, lasers, and radar and sonar systems, says Eos.

The grant awarded to Texas A&M was among $17 million in DOE grants given to 14 projects that seek to accelerate innovation in the critical materials sector. The federal Energy Act of 2020 defines a critical material — such as aluminum, cobalt, copper, lithium, magnesium, nickel, and platinum — as a substance that faces a high risk of supply chain disruption and “serves an essential function” in the energy sector.

“DOE is helping reduce the nation’s dependence on foreign supply chains through innovative solutions that will tap domestic sources of the critical materials needed for next-generation technologies,” says U.S. Energy Secretary Jennifer Granholm. “These investments — part of our industrial strategy — will keep America’s growing manufacturing industry competitive while delivering economic benefits to communities nationwide.”

------

This article originally appeared on EnergyCapital.

Biosciences startup becomes Texas' first decacorn after latest funding

A Dallas-based biosciences startup whose backers include millionaire investors from Austin and Dallas has reached decacorn status — a valuation of at least $10 billion — after hauling in a series C funding round of $200 million, the company announced this month. Colossal Biosciences is reportedly the first Texas startup to rise to the decacorn level.

Colossal, which specializes in genetic engineering technology designed to bring back or protect various species, received the $200 million from TWG Global, an investment conglomerate led by billionaire investors Mark Walter and Thomas Tull. Walter is part owner of Major League Baseball’s Los Angeles Dodgers, and Tull is part owner of the NFL’s Pittsburgh Steelers.

Among the projects Colossal is tackling is the resurrection of three extinct animals — the dodo bird, Tasmanian tiger and woolly mammoth — through the use of DNA and genomics.

The latest round of funding values Colossal at $10.2 billion. Since launching in 2021, the startup has raised $435 million in venture capital.

In addition to Walter and Tull, Colossal’s investors include prominent video game developer Richard Garriott of Austin and private equity veteran Victor Vescov of Dallas. The two millionaires are known for their exploits as undersea explorers and tourist astronauts.

Aside from Colossal’s ties to Dallas and Austin, the startup has a Houston connection.

The company teamed up with Baylor College of Medicine researcher Paul Ling to develop a vaccine for elephant endotheliotropic herpesvirus (EEHV), the deadliest disease among young elephants. In partnership with the Houston Zoo, Ling’s lab at the Baylor College of Medicine has set up a research program that focuses on diagnosing and treating EEHV, and on coming up with a vaccine to protect elephants against the disease. Ling and the BCMe are members of the North American EEHV Advisory Group.

Colossal operates research labs Dallas, Boston and Melbourne, Australia.

“Colossal is the leading company working at the intersection of AI, computational biology, and genetic engineering for both de-extinction and species preservation,” Walter, CEO of TWG Globa, said in a news release. “Colossal has assembled a world-class team that has already driven, in a short period of time, significant technology innovations and impact in advancing conservation, which is a core value of TWG Global.”

Well-known genetics researcher George Church, co-founder of Colossal, calls the startup “a revolutionary genetics company making science fiction into science fact.”

“We are creating the technology to build de-extinction science and scale conservation biology,” he added, “particularly for endangered and at-risk species.”