Lockheed Martin Ventures says it's committed to helping Houston-based Venus Aerospace scale its technology. Photo courtesy Venus Aerospace

Venus Aerospace, a Houston-based startup specializing in next-generation rocket engine propulsion, has received funding from Lockheed Martin Ventures, the investment arm of aerospace and defense contractor Lockheed Martin, for an undisclosed amount. The product lineup at Lockheed Martin includes rockets.

The investment follows Venus’ successful high-thrust test flight of its rotating detonation rocket engine (RDRE) in May. Venus says it’s the only company in the world that makes a flight-proven, high-thrust RDRE with a “clear path to scaled production.”

Venus says the Lockheed Martin Ventures investment reflects the potential of Venus’ dual-use technology for defense and commercial uses.

“Venus has proven in flight the most efficient rocket engine technology in history,” Venus co-founder and CEO Sassie Duggleby, a board member of the Texas Space Commission, said in a news release. “With support from Lockheed Martin Ventures, we will advance our capabilities to deliver at scale and deploy the engine that will power the next 50 years of defense, space, and commercial high-speed aviation.”

Chris Moran, executive director and general manager of Lockheed Martin Ventures, said Lockheed Martin has been a longtime supporter of early-stage “transformational” technologies.

“Our investment in Venus Aerospace reflects a conviction that next-generation propulsion will define which nations lead in space and defense for decades to come,” Moran added in the release. “We are committed to helping Venus scale this technology and integrate it into critical systems.”

Since its founding in 2020, Venus has secured more than $106 million in funding. In addition to Lockheed Martin Ventures, investors include Airbus Ventures, America’s Frontier Fund, Trousdale Ventures, and Prime Movers Lab. Supporters of Venus include NASA, the Air Force Research Lab and the Defense Advanced Research Projects Agency (DARPA).
Venus Aerospace has used a Small Business Innovation Research (SBIR) grant from NASA to develop new features of its compact rocket engine for hypersonic flights. Photo courtesy of Venus Aerospace.

Houston space tech company develops new hypersonic engine features with NASA funding

testing 1, 2, 3

Outfitted with a new type of aerospace technology, a rocket engine developed by Houston startup Venus Aerospace for hypersonic flights will undergo testing this summer.

Supported by a $155,908 federal Small Business Innovation Research (SBIR) grant from NASA, Venus Aerospace came up with a new design for nozzles — engine parts that help manage power — for its compact rocket engine. Venus Aerospace says the newly configured nozzles have “exceeded expectations” and will be incorporated into Venus’ upcoming ground-based engine testing.

“We’ve already proven our engine outperforms traditional systems on both efficiency and size,” Venus Aerospace CEO Sassie Duggleby says. “The technology we developed with NASA’s support will now be part of our integrated engine platform — bringing us one step closer to proving that efficient, compact, and affordable hypersonic flight can be scaled.”

The engine at the heart of Venus’ flight platform is called a rotating detonation rocket engine (RDRE). Venus says it’s the first U.S. company to make a scalable, affordable, flight-ready RDRE.

Unlike conventional rocket engines, Venus’ RDRE operates through supersonic shockwaves, called detonations, that generate more power with less fuel.

“This is just the beginning of what can be achieved with Venus propulsion technology,” says Andrew Duggleby, chief technology officer at Venus, founded in 2020. “We’ve built a compact high-performance system that unlocks speed, range, and agility across aerospace, defense, and many other applications. And we’re confident in its readiness for flight.”

Last fall, the company unveiled a high-speed engine system that enables takeoff, acceleration, and hypersonic cruising — all powered by a single engine. While most high-speed systems require multiple engines to operate at different speeds, Venus’ innovation does away with the cost, weight and complexity of traditional propulsion technology.

Among other applications, the Venus system supports:

  • Spacecraft landers
  • Low-earth-orbit satellites
  • Vehicles that haul space cargo
  • Hypersonic drones and missiles
Intuitive Machines recently completed the first round of “human in the loop” testing for its Moon RACER. Photo courtesy of Intuitive Machines

2 Houston space tech cos. celebrate major tech milestones

big wins

Two Houston aerospace companies — Intuitive Machines and Venus Aerospace — have reached testing milestones for equipment they’re developing.

Intuitive Machines recently completed the first round of “human in the loop” testing for its Moon RACER (Reusable Autonomous Crewed Exploration Rover) lunar terrain vehicle. The company conducted the test at NASA’s Johnson Space Center.

RACER is one of three lunar terrain vehicles being considered by NASA for the space agency’s Artemis initiative, which will send astronauts to the moon.

NASA says human-in-the-loop testing can reveal design flaws and technical problems, and can lead to cost-efficient improvements. In addition, it can elevate the design process from 2D to 3D modeling.

Intuitive Machines says the testing “proved invaluable.” NASA astronauts served as test subjects who provided feedback about the Moon RACER’s functionality.

The Moon RACER, featuring a rechargeable electric battery and a robotic arm, will be able to accommodate two astronauts and more than 880 pounds of cargo. It’s being designed to pull a trailer loaded with more than 1,760 pounds of cargo.

Another Houston company, Venus Aerospace, recently achieved ignition of its VDR2 rocket engine. The engine, being developed in tandem with Ohio-based Velontra — which aims to produce hypersonic planes — combines the functions of a rotating detonation rocket engine with those of a ramjet.

A rotating detonation rocket engine, which isn’t equipped with moving parts, rapidly burns fuel via a supersonic detonation wave, according to the Air Force Research Laboratory. In turn, the engine delivers high performance in a small volume, the lab says. This savings in volume can offer range, speed, and affordability benefits compared with ramjets, rockets, and gas turbines.

A ramjet is a type of “air breathing” jet engine that does not include a rotary engine, according to the SKYbrary electronic database. Instead, it uses the forward motion of the engine to compress incoming air.

A ramjet can’t function at zero airspeed, so it can’t power an aircraft during all phases of flight, according to SKYbrary. Therefore, it must be paired with another kind of propulsion, such as a rotating detonation rocket engine, to enable acceleration at a speed where the ramjet can produce thrust.

“With this successful test and ignition, Venus Aerospace has demonstrated the exceptional ability to start a [ramjet] at takeoff speed, which is revolutionary,” the company says.

Venus Aerospace plans further testing of its engine in 2025.

Venus Aerospace, recently achieved ignition of its VDR2 rocket engine. Photo courtesy of Venus Aerospace

Venus Aerospace announced that it's successfully ran the first long-duration engine test of their Rotating Detonation Rocket Engine in partnership with DARPA. Screenshot via Venus Aerospace

Houston space tech startup reports milestone achievement in partnership with federal agency

taking flight

A Houston tech company working on an engine to enable hypersonic flights has reported its latest milestone.

Venus Aerospace announced that it's successfully ran the first long-duration engine test of their Rotating Detonation Rocket Engine in partnership with Defense Advanced Research Projects Agency, or DARPA.

The RDRE engine Venus is working on is uniquely designed and a first in the field. It has an additional 15 percent efficiency over traditional rocket engines.

"As we continue to push towards our ultimate mission of high-speed global flight, this is an important technical milestone for having a flight-ready engine," Andrew Duggleby, CTO and co-founder of Venus Aerospace, says in the news release. "I'm incredibly proud of our team as they continue to push forward on this world-changing technology."

The test results are a big win, as the RDRE had previously only been tested in a short-duration capacity. DARPA is just one of several U.S. Government agencies that has contracts with Venus.

"The successful test is a testament to our team's dedication and expertise. We're building something special here at Venus, in large part because we have the right people and the right partners," Sassie Duggleby, CEO and co-founder of Venus Aerospace, adds. "I can't say enough about our collaboration with DARPA and the role they played in helping us make this leap forward."

Last summer, Venus added a new investor to its cap table. Andrew Duggleby founded Venus Aerospace with his wife and CEO Sassie in 2020, before relocating to the Houston Spaceport in 2021. Last year, Venus raised a $20 million series A round. Sassie joined the Houston Innovators Podcast a year ago to explain her company's mission of "home for dinner."

DARPA Partnership Long-Duration Testwww.youtube.com

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Innovative Houston-area hardtech startup closes $5M seed round

fresh funding

Conroe-based hardtech startup FluxWorks has closed a $5 million seed round.

The funding was led by Austin-based Scout Ventures, which invests in early-stage startups working to solve national security challenges.

Michigan Capital Network also contributed to the round from its MCN Venture Fund V. The fund is one of 18 selected by the Department of Defense and Small Business Administration to participate in the Small Business Investment Company Critical Technologies Initiative, which will invest $4 billion into over 1,700 portfolio companies.

FluxWorks reports that it will use the funding to drive the commercialization of its flagship Celestial Gear technology.

"At Scout, we invest in 'frontier tech' that is essential to national interest. FluxWorks is doing exactly that by solving critical hardware bottlenecks with its flagship Celestial Gear technology ... This is about more than just gears; it’s about strengthening our industrial infrastructure," Scout Ventures shared in a LinkedIn post.

Fluxworks specializes in making contactless magnetic gears for use in extreme conditions, which can enhance in-space manufacturing. Its contactless design leads to less wear, debris and maintenance. Its technology is particularly suited for space applications because it does not require lubricants, which can be difficult to control at harsh temperatures and in microgravity.

The company received a grant from the Texas Space Commission last year and was one of two startups to receive the Technology in Space Prize, funded by Boeing and the Center for the Advancement of Science in Space (CASIS), in 2024. It also landed $1.2 million through the National Science Foundation's SBIR Phase II grant this fall.

Fluxworks was founded in College Station by CEO Bryton Praslicka in 2021. Praslicka moved the company to Conroe 2024.

5 Houston scientists named winners of prestigious Hill Prizes 2026

prized research

Five Houston scientists were recognized for their "high-risk, high-reward ideas and innovations" by Lyda Hill Philanthropies and the Texas Academy of Medicine, Engineering, Science and Technology (TAMEST).

The 2026 Hill Prizes provide seed funding to top Texas researchers. This year's prizes were given out in seven categories, including biological sciences, engineering, medicine, physical sciences, public health and technology, and the new artificial intelligence award.

Each recipient’s institution or organization will receive $500,000 in direct funding from Dallas-based Lyda Hill Philanthropies. The organization has also committed to giving at least $1 million in discretionary research funding on an ad hoc basis for highly-ranked applicants who were not selected as recipients.

“It is with great pride that I congratulate this year’s Hill Prizes recipients. Their pioneering spirit and unwavering dedication to innovation are addressing some of the most pressing challenges of our time – from climate resilience and energy sustainability to medical breakthroughs and the future of artificial intelligence,” Lyda Hill, founder of Lyda Hill Philanthropies, said in a news release.

The 2026 Houston-area recipients include:

Biological Sciences: Susan M. Rosenberg, Baylor College of Medicine

Rosenberg and her team are developing ways to fight antibiotic resistance. The team will use the funding to screen a 14,000-compound drug library to identify additional candidates, study their mechanisms and test their ability to boost antibiotic effectiveness in animal models. The goal is to move toward clinical trials, beginning with veterans suffering from recurrent infections.

Medicine: Dr. Raghu Kalluri, The University of Texas MD Anderson Cancer Center

Kalluri is developing eye drops to treat age-related macular degeneration (AMD), the leading cause of vision loss globally. Kalluri will use the funding to accelerate studies and support testing for additional ocular conditions. He was also named to the National Academy of Inventors’ newest class of fellows last month.

Engineering: Naomi J. Halas, Rice University

Co-recipeints: Peter J. A. Nordlander and Hossein Robatjazi, Rice University

Halas and her team are working to advance light-driven technologies for sustainable ammonia synthesis. The team says it will use the funding to improve light-driven catalysts for converting nitrogen into ammonia, refine prototype reactors for practical deployment and partner with industry collaborators to advance larger-scale applications. Halas and Nordlander are co-founders of Syzygy Plasmonics, and Robatjazi serves as vice president of research for the company.

The other Texas-based recipients include:

  • Artificial Intelligence: Kristen Grauman, The University of Texas at Austin
  • Physical Sciences: Karen L. Wooley, Texas A&M University; Co-Recipient: Matthew Stone, Teysha Technologies
  • Public Health: Dr. Elizabeth C. Matsui, The University of Texas at Austin and Baylor College of Medicine
  • Technology: Kurt W. Swogger, Molecular Rebar Design LLC; Co-recipients: Clive Bosnyak, Molecular Rebar Design, and August Krupp, MR Rubber Business and Molecular Rebar Design LLC

Recipients will be recognized Feb. 2 during the TAMEST 2026 Annual Conference in San Antonio. They were determined by a committee of TAMEST members and endorsed by a committee of Texas Nobel and Breakthrough Prize Laureates and approved by the TAMEST Board of Directors.

“On behalf of TAMEST, we are honored to celebrate the 2026 Hill Prizes recipients. These outstanding innovators exemplify the excellence and ambition of Texas science and research,” Ganesh Thakur, TAMEST president and a distinguished professor at the University of Houston, added in the release. “Thanks to the visionary support of Lyda Hill Philanthropies, the Hill Prizes not only recognize transformative work but provide the resources to move bold ideas from the lab to life-changing solutions. We are proud to support their journeys and spotlight Texas as a global hub for scientific leadership.”

Investment bank opens new Houston office focused on energy sector

Investment bank Cohen & Co. Capital Markets has opened a Houston office to serve as the hub of its energy advisory business and has tapped investment banking veteran Rahul Jasuja as the office’s leader.

Jasuja joined Cohen & Co. Capital Markets, a subsidiary of financial services company Cohen & Co., as managing director, and head of energy and energy transition investment banking. Cohen’s capital markets arm closed $44 billion worth of deals last year.

Jasuja previously worked at energy-focused Houston investment bank Mast Capital Advisors, where he was managing director of investment banking. Before Mast Capital, Jasuja was director of energy investment banking in the Houston office of Wells Fargo Securities.

“Meeting rising [energy] demand will require disciplined capital allocation across traditional energy, sustainable fuels, and firm, dispatchable solutions such as nuclear and geothermal,” Jasuja said in a news release. “Houston remains the center of gravity where capital, operating expertise, and execution come together to make that transition investable.”

The Houston office will focus on four energy verticals:

  • Energy systems such as nuclear and geothermal
  • Energy supply chains
  • Energy-transition fuel and technology
  • Traditional energy
“We are making a committed investment in Houston because we believe the infrastructure powering AI, defense, and energy transition — from nuclear to rare-earth technology — represents the next secular cycle of value creation,” Jerry Serowik, head of Cohen & Co. Capital Markets, added in the release.

---

This article originally appeared on EnergyCaptialHTX.com.