You've heard "it's not rocket science" throughout your life, but but turns out that aerospace exploration — even in 2021 — is still very hard. Photo via Pexels

If there is anything that goes hand in hand so perfectly, it's Houston and Space. Houston is home to the Johnson Space Center, named after former president Lyndon B. Johnson, and is home to revolutionary space research projects and spaceflight training for both crew members and flight controllers. While it's every kid's dream to become an astronaut, have you ever wondered why rocket science is actually so difficult?

Though the space race of the '70s has been over for some time, the new space race — the race to Mars and the commercialization of space tourism — has just started. Elon Musk, Jeff Bezos, and Richard Branson are spearheading the "Billionaire space race." But even with their billions being put into developing spaceports, NASA rocket partnerships, and planning future Mars missions, rocket science is just as difficult to implement as it was the first time around.

So why, even with billions of dollars at their disposal and many companies pushing for more funding, are scientists and engineers still struggling to make rocket travel an everyday thing? Here are some of the countless reasons why rockets science is insanely difficult, no matter how much money you throw at it.

Small talent pool

The Apollo astronauts were the best of the best — and the hundreds of thousands of engineers and rocket scientists behind the scenes were just as talented. But getting to the point in one's career where you have the right background experience and the right hands-on work and real-life experience to create a safe rocket is difficult. The talent pool that SpaceX, Virgin Galactic, and Blue Origin are working with is extremely small and notoriously competitive. As these programs continue to build in credibility, it may be easier to find talent, but few engineers want to be tied to a failed launch.

The risk of failure

Usually, when you fail at something like a math test or a driver's exam, the ramifications aren't too big. But with space travel, a small problem can quickly turn into a deadly situation for those on board the rocket. Think back to the Challenger explosion in 1986. The success of previous missions (not to mention the administrative corner-cutting) led to a false sense of security when in reality they were still embarking on the insanely difficult feat of launching humans into space. The risk of failure is so great, many commercial manufacturers are cautious to put their weight behind an operation that could in all likelihood come crashing back down to Earth.

Rocket construction

Think back to when you were in school learning about Isaac Newton's Third Law of Motion: for every action, there is an equal and opposite reaction. It's a simple idea, but complex in reality. That law of motion forms the basis for rocket science: the combustion of rocket fuel down into the earth is one action, so the opposite reaction causes the rocket to launch upward into space. But the engineering that's needed for a launch to take place is the hard part.

As mentioned in a 2012 NPR article, there are millions of pieces in every rocket, and "therefore millions of opportunities to make errors — to make errors in calculations, to make errors in construction." The devastating Challenger mission failure is often attributed to faulty O-rings — it's a simple piece of equipment and can often be overlooked.

Even after hundreds of successful launches over the years, rocket construction is just as complex, and the process of shooting humans into space cannot be distilled to a law of motion when there is so much more involved to make that process happen.

Public perception

Throughout the '70s, Americans were enthralled by the idea of the space race and becoming the first country to set foot on the moon. But the public's passion died down after that initial landing. Today, the public perception of current space projects is making doing the actual rocket science and engineering difficult.


Objections against NASA's waste of taxpayer money on "futile" missions and the idea that space travel will only be for the mega-wealthy make any conversation around actual scientific discovery second to politics. Not to even mention the newly minted Space Force. Engineers and scientists have to navigate a hoard of political, financial, and PR battles to even get to do the work of getting people back into space.

The bottom line

Rocket science is thought of as one of the most difficult fields for a reason. Building a piece of technology capable of going into space and even housing people inside is a relatively new feat when considering the span of time. As the billionaire space race continues to unfold, scientists and engineers behind the scenes are creating feats of engineering on a regular basis that will shape the future of space travel. But, if you want to just get a taste of space life, without all the schooling, then a trip to the Johnson Space Center is for you.

------

Natasha Ramirez is a Utah-based tech writer.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston healthtech leader launches clinical trial for innovative anxiety-treating device

making waves

Houston-based Nexalin Technology’s proprietary neurostimulation device will move forward with a new clinical trial evaluating its treatment of anxiety disorders and chronic insomnia in Brazil.

The first of Nexalin’s Gen-2 15-milliamp neurostimulation devices have been shipped to São Paulo, Brazil, and the study will be conducted at the Instituto de Psiquiatria university hospital (IPq-HCFMUSP). The shipments aim to support the launch of a Phase II clinical trial in adult patients suffering from anxiety and insomnia, according to a news release.

“Brazil is an important emerging market for mental health innovation, and this collaboration marks our first IRB-approved study in the region,” Mike White, CEO of Nexalin, said in the release.

The study will be led by Dr. Andre Russowsky Brunoni, who specializes in neuromodulation and interventional psychiatry. He currently serves as director of the interventional psychiatry division at IPq-HCFMUSP and this summer will join UT Southwestern in Dallas and its Peter O’Donnell Jr. Brain Institute as a professor of psychiatry.

The Phase II study plans to enroll 30 adults in São Paulo and assess the efficacy of Nexalin’s non-invasive deep intracranial frequency stimulation (DIFS™) of the brain in reducing anxiety symptoms and improving sleep quality, according to the company. Using the Hamilton Anxiety Rating Scale (HAM-A), the trial’s goal is a reduction in anxiety symptoms, and assessments of sleep onset latency, total sleep time, overall sleep quality, depressive symptoms and clinical impression of improvement. The company plans to share results in a peer-reviewed scientific journal.

“Anxiety and insomnia are very common conditions that often occur together and cause significant distress,” Brunoni added in the news release. “In this study, we are testing a new, non-invasive brain stimulation technology that has shown promising results in recent research. Our goal is to offer a safe, painless, and accessible alternative to improve people’s well being and sleep quality.”

The Nexalin Gen-2 15-milliamp neurostimulation device has been approved in China, Brazil, and Oman.

The company also enrolled the first patients in its clinical trial at the University of California, San Diego, in collaboration with the VA San Diego Healthcare System for its Nexalin HALO, which looks to treat mild traumatic brain injury and post-traumatic stress disorder in military personnel and the civilian population. It also recently raised $5 million through a public stock offering. Read more here.

Texas university to lead new FAA tech center focused on drones

taking flight

The Texas A&M University System will run the Federal Aviation Administration’s new Center for Advanced Aviation Technologies, which will focus on innovations like commercial drones.

“Texas is the perfect place for our new Center for Advanced Aviation Technologies,” U.S. Transportation Secretary Sean Duffy said in a release. “From drones delivering your packages to powered lift technologies like air taxis, we are at the cusp of an aviation revolution. The [center] will ensure we make that dream a reality and unleash American innovation safely.”

U.S. Sen. Ted Cruz, a Texas Republican, included creation of the center in the FAA Reauthorization Act of 2024. The center will consist of an airspace laboratory, flight demonstration zones, and testing corridors.

Texas A&M University-Corpus Christi will lead the initiative, testing unstaffed aircraft systems and other advanced technologies. The Corpus Christi campus houses the Autonomy Research Institute, an FAA-designated test site. The new center will be at Texas A&M University-Fort Worth.

The College Station-based Texas A&M system says the center will “bring together” its 19 institutions, along with partners such as the University of North Texas in Denton and Southern Methodist University in University Park.

According to a Department of Transportation news release, the center will play “a pivotal role” in ensuring the safe operation of advanced aviation technologies in public airspace.

The Department of Transportation says it chose the Texas A&M system to manage the new center because of its:

  • Proximity to major international airports and the FAA’s regional headquarters in Fort Worth
  • Existing infrastructure for testing of advanced aviation technologies
  • Strong academic programs and industry partnerships

“I’m confident this new research and testing center will help the private sector create thousands of high-paying jobs and grow the Texas economy through billions in new investments,” Cruz said.

“This is a significant win for Texas that will impact communities across our state,” the senator added, “and I will continue to pursue policies that create new jobs, and ensure the Lone Star State continues to lead the way in innovation and the manufacturing of emerging aviation technologies.”

Texas Republicans are pushing to move NASA headquarters to Houston

space city

Two federal lawmakers from Texas are spearheading a campaign to relocate NASA’s headquarters from Washington, D.C., to the Johnson Space Center in Houston’s Clear Lake area. Houston faces competition on this front, though, as lawmakers from two other states are also vying for this NASA prize.

With NASA’s headquarters lease in D.C. set to end in 2028, U.S. Sen. Ted Cruz, a Texas Republican, and U.S. Rep. Brian Babin, a Republican whose congressional district includes the Johnson Space Center, recently wrote a letter to President Trump touting the Houston area as a prime location for NASA’s headquarters.

“A central location among NASA’s centers and the geographical center of the United States, Houston offers the ideal location for NASA to return to its core mission of space exploration and to do so at a substantially lower operating cost than in Washington, D.C.,” the letter states.

Cruz is chairman of the Senate Committee on Commerce, Science, and Transportation; and Babin is chairman of the House Committee on Science, Space, and Technology. Both committees deal with NASA matters. Twenty-five other federal lawmakers from Texas, all Republicans, signed the letter.

In the letter, legislators maintain that shifting NASA’s headquarters to the Houston area makes sense because “a seismic disconnect between NASA’s headquarters and its missions has opened the door to bureaucratic micromanagement and an erosion of [NASA] centers’ interdependence.”

Founded in 1961, the $1.5 billion, 1,620-acre Johnson Space Center hosts NASA’s mission control and astronaut training operations. More than 12,000 employees work at the 100-building complex.

According to the state comptroller, the center generates an annual economic impact of $4.7 billion for Texas, and directly and indirectly supports more than 52,000 public and private jobs.

In pitching the Johnson Space Center for NASA’s HQ, the letter points out that Texas is home to more than 2,000 aerospace, aviation, and defense-related companies. Among them are Elon Musk’s SpaceX, based in the newly established South Texas town of Starbase; Axiom Space and Intuitive Machines, both based in Houston; and Firefly Aerospace, based in the Austin suburb of Cedar Park.

The letter also notes the recent creation of the Texas Space Commission, which promotes innovation in the space and commercial aerospace sectors.

Furthermore, the letter cites Houston-area assets for NASA such as:

  • A strong business environment.
  • A low level of state government regulation.
  • A cost of living that’s half of what it is in the D.C. area.

“Moving the NASA headquarters to Texas will create more jobs, save taxpayer dollars, and reinvigorate America’s space agency,” the letter says.

Last November, NASA said it was hunting for about 375,000 to 525,000 square feet of office space in the D.C. area to house the agency’s headquarters workforce. About 2,500 people work at the agency’s main offices. NASA’s announcement set off a scramble among three states to lure the agency’s headquarters.

Aside from officials in Texas, politicians in Florida and Ohio are pressing NASA to move its headquarters to their states. Florida and Ohio both host major NASA facilities.

NASA might take a different approach, however. “NASA is weighing closing its headquarters and scattering responsibilities among the states, a move that has the potential to dilute its coordination and influence in Washington,” Politico reported in March.

Meanwhile, Congressional Delegate Eleanor Holmes Norton, a Democrat who represents D.C., introduced legislation in March that would prohibit relocating a federal agency’s headquarters (including NASA’s) away from the D.C. area without permission from Congress.

“Moving federal agencies is not about saving taxpayer money and will degrade the vital services provided to all Americans across the country,” Norton said in a news release. “In the 1990s, the Bureau of Land Management moved its wildfire staff out West, only to move them back when Congress demanded briefings on new wildfires.”