You've heard "it's not rocket science" throughout your life, but but turns out that aerospace exploration — even in 2021 — is still very hard. Photo via Pexels

If there is anything that goes hand in hand so perfectly, it's Houston and Space. Houston is home to the Johnson Space Center, named after former president Lyndon B. Johnson, and is home to revolutionary space research projects and spaceflight training for both crew members and flight controllers. While it's every kid's dream to become an astronaut, have you ever wondered why rocket science is actually so difficult?

Though the space race of the '70s has been over for some time, the new space race — the race to Mars and the commercialization of space tourism — has just started. Elon Musk, Jeff Bezos, and Richard Branson are spearheading the "Billionaire space race." But even with their billions being put into developing spaceports, NASA rocket partnerships, and planning future Mars missions, rocket science is just as difficult to implement as it was the first time around.

So why, even with billions of dollars at their disposal and many companies pushing for more funding, are scientists and engineers still struggling to make rocket travel an everyday thing? Here are some of the countless reasons why rockets science is insanely difficult, no matter how much money you throw at it.

Small talent pool

The Apollo astronauts were the best of the best — and the hundreds of thousands of engineers and rocket scientists behind the scenes were just as talented. But getting to the point in one's career where you have the right background experience and the right hands-on work and real-life experience to create a safe rocket is difficult. The talent pool that SpaceX, Virgin Galactic, and Blue Origin are working with is extremely small and notoriously competitive. As these programs continue to build in credibility, it may be easier to find talent, but few engineers want to be tied to a failed launch.

The risk of failure

Usually, when you fail at something like a math test or a driver's exam, the ramifications aren't too big. But with space travel, a small problem can quickly turn into a deadly situation for those on board the rocket. Think back to the Challenger explosion in 1986. The success of previous missions (not to mention the administrative corner-cutting) led to a false sense of security when in reality they were still embarking on the insanely difficult feat of launching humans into space. The risk of failure is so great, many commercial manufacturers are cautious to put their weight behind an operation that could in all likelihood come crashing back down to Earth.

Rocket construction

Think back to when you were in school learning about Isaac Newton's Third Law of Motion: for every action, there is an equal and opposite reaction. It's a simple idea, but complex in reality. That law of motion forms the basis for rocket science: the combustion of rocket fuel down into the earth is one action, so the opposite reaction causes the rocket to launch upward into space. But the engineering that's needed for a launch to take place is the hard part.

As mentioned in a 2012 NPR article, there are millions of pieces in every rocket, and "therefore millions of opportunities to make errors — to make errors in calculations, to make errors in construction." The devastating Challenger mission failure is often attributed to faulty O-rings — it's a simple piece of equipment and can often be overlooked.

Even after hundreds of successful launches over the years, rocket construction is just as complex, and the process of shooting humans into space cannot be distilled to a law of motion when there is so much more involved to make that process happen.

Public perception

Throughout the '70s, Americans were enthralled by the idea of the space race and becoming the first country to set foot on the moon. But the public's passion died down after that initial landing. Today, the public perception of current space projects is making doing the actual rocket science and engineering difficult.


Objections against NASA's waste of taxpayer money on "futile" missions and the idea that space travel will only be for the mega-wealthy make any conversation around actual scientific discovery second to politics. Not to even mention the newly minted Space Force. Engineers and scientists have to navigate a hoard of political, financial, and PR battles to even get to do the work of getting people back into space.

The bottom line

Rocket science is thought of as one of the most difficult fields for a reason. Building a piece of technology capable of going into space and even housing people inside is a relatively new feat when considering the span of time. As the billionaire space race continues to unfold, scientists and engineers behind the scenes are creating feats of engineering on a regular basis that will shape the future of space travel. But, if you want to just get a taste of space life, without all the schooling, then a trip to the Johnson Space Center is for you.

------

Natasha Ramirez is a Utah-based tech writer.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space-tested cancer drug advances to clinical trials

mission critical

A cancer-fighting drug tested aboard several Axiom Space missions is moving forward to clinical trials.

Rebecsinib, which targets a cancer cloning and immune evasion gene, ADAR1, has received FDA approval to enter clinical trials under active Investigational New Drug (IND) status, according to a news release. The drug was tested aboard Axiom Mission 2 (Ax-2) and Axiom Mission 3 (Ax-3). It was developed by Aspera Biomedicine, led by Dr. Catriona Jamieson, director of the UC San Diego Sanford Stem Cell Institute (SSCI).

The San Diego-based Aspera team and Houston-based Axiom partnered to allow Rebecsinib to be tested in microgravity. Tumors have been shown to grow more rapidly in microgravity and even mimic how aggressive cancers can develop in patients.

“In terms of tumor growth, we see a doubling in growth of these little mini-tumors in just 10 days,” Jamieson explained in the release.

Rebecsinib took part in the patient-derived tumor organoid testing aboard the International Space Station. Similar testing is planned to continue on Axiom Station, the company's commercial space station that's currently under development.

Additionally, the drug will be tested aboard Ax-4 under its active IND status, which was targeted to launch June 25.

“We anticipate that this monumental mission will inform the expanded development of the first ADAR1 inhibitory cancer stem cell targeting drug for a broad array of cancers," Jamieson added.

According to Axiom, the milestone represents the potential for commercial space collaborations.

“We’re proud to work with Aspera Biomedicines and the UC San Diego Sanford Stem Cell Institute, as together we have achieved a historic milestone, and we’re even more excited for what’s to come,” Tejpaul Bhatia, the new CEO of Axiom Space, said in the release. “This is how we crack the code of the space economy – uniting public and private partners to turn microgravity into a launchpad for breakthroughs.”

Chevron enters the lithium market with major Texas land acquisition

to market

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.

---

This article originally appeared on EnergyCapital.