This week's roundup of Houston innovators includes Jon Lambert of The Cannon, Ken Cowan of Enchanted Rock, and Richard Wilson of the University of Houston. Photos courtesy

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a podcast with the CEO of a community-focused coworking space, a professor joining a major health care research project, and a guest columnist with advice on navigating the energy transition.

Jon Lambert, CEO of The Cannon

Jon Lambert, CEO of The Cannon, joins the Houston Innovators Podcast to discuss the growth of The Cannon, including its newest location. Photo courtesy of The Cannon

For the past five years as CEO, Jon Lambert has faced some challenges leading The Cannon — from navigating a global pandemic to the subsequent evolved real estate market. But now, the coworking and community building company is poised for even more growth — especially with its ninth location opening up this month — thanks to its community-driven mission.

The Cannon Memorial opens its doors on Monday, May 13, with a week of free coworking and events. And while the new space, developed in partnership with MetroNational, is open for leasing, Lambert says on the Houston Innovators Podcast the first and foremost, The Cannon is a community.

"The Cannon wasn't created as a real estate play — we got into coworking because as we started supporting the community and asking the question of, 'what can we do for you?,' one of the highlights was, 'hey, we need space to work,'" he says on the show. "For us, we were going to provide space because that's one of the key needs of this community.

"Our measurement of success is not the buildings we have or the occupancy even — it's what's the success of the companies that are part of the community," he continues. Click here to read more.


Ken Cowan, senior vice president of Enchanted Rock

Ken Cowan writes a guest column for InnovationMap. Photo courtesy

As senior vice president of Enchanted Rock, a Houston-based provider of microgrid technology, Ken Cowan has seen how energy resilience has emerged as a key strategy for businesses across industries, as he writes in a guest column for InnovationMap.

"Executives must recognize the strategic imperative of investing in resilient energy infrastructure like microgrid systems, which can provide a competitive advantage against organizations that do not have similar measures in place," he writes. "In doing so, they can navigate uncertainty with confidence, set their business up for future success, and emerge stronger and more resilient than ever before."

In the piece, he explores the value proposition and other benefits to making these changes. Click here to read more.

Richard Willson, Huffington-Woestemeyer Professor of chemical and biomolecular engineering at the University of Houston

Richard Willson (center) and his team are working to develop a mix-and-read antibody measurement system that uses fluorescent materials to determine the amount of antibody present in a sample. Photo via UH.edu

An engineering project at the University of Houston has been selected to join a $10 million effort to bring biopharmaceutical manufacturing into the future. The National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL) chose the lab of Richard Willson, Huffington-Woestemeyer Professor of chemical and biomolecular engineering at UH, as one of eight development projects that it will fund.

Willson and his team are working to develop a mix-and-read antibody measurement system that uses fluorescent materials to determine the amount of antibody present in a sample. The funding for this project is $200,000. This is the first grant UH has received from NIIMBL.

“In the course of the manufacturing processes, it's important to know the concentration of antibody in your sample and this measurement needs to be made many times in a typical manufacturing process,” said Willson in a press release. In the realm of fluorescents, he is also working to pioneer the use of glow sticks to detect biothreats for the U.S. Navy. His discoveries include a fluorescent material that emits one color of light when excited with another color of light. Click here to read more.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.