This week's roundup of Houston innovators includes Jon Lambert of The Cannon, Ken Cowan of Enchanted Rock, and Richard Wilson of the University of Houston. Photos courtesy

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a podcast with the CEO of a community-focused coworking space, a professor joining a major health care research project, and a guest columnist with advice on navigating the energy transition.

Jon Lambert, CEO of The Cannon

Jon Lambert, CEO of The Cannon, joins the Houston Innovators Podcast to discuss the growth of The Cannon, including its newest location. Photo courtesy of The Cannon

For the past five years as CEO, Jon Lambert has faced some challenges leading The Cannon — from navigating a global pandemic to the subsequent evolved real estate market. But now, the coworking and community building company is poised for even more growth — especially with its ninth location opening up this month — thanks to its community-driven mission.

The Cannon Memorial opens its doors on Monday, May 13, with a week of free coworking and events. And while the new space, developed in partnership with MetroNational, is open for leasing, Lambert says on the Houston Innovators Podcast the first and foremost, The Cannon is a community.

"The Cannon wasn't created as a real estate play — we got into coworking because as we started supporting the community and asking the question of, 'what can we do for you?,' one of the highlights was, 'hey, we need space to work,'" he says on the show. "For us, we were going to provide space because that's one of the key needs of this community.

"Our measurement of success is not the buildings we have or the occupancy even — it's what's the success of the companies that are part of the community," he continues. Click here to read more.


Ken Cowan, senior vice president of Enchanted Rock

Ken Cowan writes a guest column for InnovationMap. Photo courtesy

As senior vice president of Enchanted Rock, a Houston-based provider of microgrid technology, Ken Cowan has seen how energy resilience has emerged as a key strategy for businesses across industries, as he writes in a guest column for InnovationMap.

"Executives must recognize the strategic imperative of investing in resilient energy infrastructure like microgrid systems, which can provide a competitive advantage against organizations that do not have similar measures in place," he writes. "In doing so, they can navigate uncertainty with confidence, set their business up for future success, and emerge stronger and more resilient than ever before."

In the piece, he explores the value proposition and other benefits to making these changes. Click here to read more.

Richard Willson, Huffington-Woestemeyer Professor of chemical and biomolecular engineering at the University of Houston

Richard Willson (center) and his team are working to develop a mix-and-read antibody measurement system that uses fluorescent materials to determine the amount of antibody present in a sample. Photo via UH.edu

An engineering project at the University of Houston has been selected to join a $10 million effort to bring biopharmaceutical manufacturing into the future. The National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL) chose the lab of Richard Willson, Huffington-Woestemeyer Professor of chemical and biomolecular engineering at UH, as one of eight development projects that it will fund.

Willson and his team are working to develop a mix-and-read antibody measurement system that uses fluorescent materials to determine the amount of antibody present in a sample. The funding for this project is $200,000. This is the first grant UH has received from NIIMBL.

“In the course of the manufacturing processes, it's important to know the concentration of antibody in your sample and this measurement needs to be made many times in a typical manufacturing process,” said Willson in a press release. In the realm of fluorescents, he is also working to pioneer the use of glow sticks to detect biothreats for the U.S. Navy. His discoveries include a fluorescent material that emits one color of light when excited with another color of light. Click here to read more.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC lands $3M grant to launch cancer device accelerator

cancer funding

A new business accelerator at Houston’s Texas Medical Center has received a nearly $3 million grant from the Cancer Prevention and Research Institute of Texas.

The CPRIT grant, awarded to the Texas Medical Center Foundation, will help launch the Accelerator for Cancer Medical Devices. The accelerator will support emerging innovators in developing prototypes for cancer-related medical devices and advancing them from prototype to clinical trials.

“The translation of new cancer-focused precision medical devices, often the width of a human hair, creates the opportunity to develop novel treatments for cancer patients,” the accelerator posted on the CPRIT website.

Scientist, consultant, and entrepreneur Jason Sakamoto, associate director of the TMC Center for Device Innovation, will oversee the accelerator. TMC officials say the accelerator builds on the success of TMC Innovation’s Accelerator for Cancer Therapeutics.

Each participant in the Accelerator for Cancer Medical Devices program will graduate with a device prototype, a business plan, and a “solid foundation” in preclinical and clinical strategies, TMC says. Participants will benefit from “robust support” provided by the TMC ecosystem, according to the medical center, and “will foster innovation into impactful and life-changing cancer patient solutions in Texas and beyond.”

In all, CPRIT recently awarded $27 million in grants for cancer research. That includes $18 million to attract top cancer researchers to Texas. Houston institutions received $4 million for recruitment:

  • $2 million to the University of Texas MD Anderson Cancer Center to recruit Rodrigo Romero from Memorial Sloan Kettering Cancer Center in New York City
  • $2 million to MD Anderson to recruit Eric Gardner from Weill Cornell Medicine in New York City

A $1 million grant also went to Baylor College of Medicine researcher Dr. Akiva Diamond. He is an assistant professor at the medical college and is affiliated with Baylor’s Dan L. Duncan Comprehensive Cancer Center.

Houston students develop cost-effective glove to treat Parkinson's symptoms

smart glove

Two Rice undergraduate engineering students have developed a non-invasive vibrotactile glove that aims to alleviate the symptoms of Parkinson’s disease through therapeutic vibrations.

Emmie Casey and Tomi Kuye developed the project with support from the Oshman Engineering Design Kitchen (OEDK) and guidance from its director, Maria Oden, and Rice lecturer Heather Bisesti, according to a news release from the university.

The team based the design on research from the Peter Tass Lab at Stanford University, which explored how randomized vibratory stimuli delivered to the fingertips could help rewire misfiring neurons in the brain—a key component of Parkinson’s disease.

Clinical trials from Stanford showed that coordinated reset stimulation from the vibrations helped patients regain motor control and reduced abnormal brain activity. The effects lasted even after users removed the vibrotactile gloves.

Casey and Kuye set out to replicate the breakthrough at a lower cost. Their prototype replaced the expensive motors used in previous designs with motors found in smartphones that create similar tiny vibrations. They then embedded the motors into each fingertip of a wireless glove.

“We wanted to take this breakthrough and make it accessible to people who would never be able to afford an expensive medical device,” Casey said in the release. “We set out to design a glove that delivers the same therapeutic vibrations but at a fraction of the cost.”

Rice’s design also targets the root of the neurological disruption and attempts to retrain the brain. An early prototype was given to a family friend who had an early onset of the disease. According to anecdotal data from Rice, after six months of regularly using the gloves, the user was able to walk unaided.

“We’re not claiming it’s a cure,” Kuye said in the release. “But if it can give people just a little more control, a little more freedom, that’s life-changing.”

Casey and Kuye are working to develop a commercial version of the glove priced at $250. They are taking preorders and hope to release 500 pairs of gloves this fall. They've also published an open-source instruction manual online for others who want to try to build their own glove at home. They have also formed a nonprofit and plan to use a sliding scale price model to help users manage the cost.

“This project exemplifies what we strive for at the OEDK — empowering students to translate cutting-edge research into real-world solutions,” Oden added in the release. “Emmie and Tomi have shown extraordinary initiative and empathy in developing a device that could bring meaningful relief to people living with Parkinson’s, no matter their resources.”