What happens to creativity when those who use a particular thinking style tried a different approach? Getty Images

Creativity is an essential ingredient in problem-solving, and the importance of "thinking outside the box" has been stressed in nearly every context imaginable, business or otherwise. But that mantra assumes — wrongly — that we all start off thinking inside the same sort of cognitive box.

Instead, each person has a distinctive cognitive style: some of us, for example, are more intuitive, and others approach the world more rationally. What happens to creativity when those who use a particular thinking style tried a different approach?

Rice Business Professor Erik Dane decided to investigate. Along with colleagues Markus Baer of Washington University in St. Louis, Michael Pratt of Boston College, and Greg Oldham of Tulane University Dane studied typical thinking styles, rational versus and intuitive, and how resisting the most familiar one can affect creativity.

Rational thinkers, the professors noted, learn information deliberately and engage in thoughtful analysis. They depend on a linear, or sequential, way of processing information. Intuitive thinking, meanwhile, is an unconscious way of processing information. It's essentially the opposite of rational thinking: quick and holistic, rather than deliberate and comprehensive.

When a rational thinker faces a problem, her mind goes through multiple stages, tapping relevant mental data bases and coming up with alternative solutions. Her mind evaluates and refines these scenarios to choose the best possible solution to the problem.

An intuitive thinker, on the other hand, goes with his gut. Many researchers believe this type of thinking sparks creativity because it integrates so many different pieces of experience.

To explore what happens when one type of thinker follows a different approach, Dane and his fellow researchers colleagues gave test subjects a scenario. How could they get more students to come into a gift shop? Participants first had to come up with ideas using either an intuitive or a rational problem-solving approach. Then they filled out a short questionnaire. Afterward, the professors evaluated the ideas as creative or not creative, based on originality and usefulness.

When a participant wasn't used to rational thinking and had to problem-solve using a more rational approach, he or she came up with more creative ideas, the researchers found. This, the researchers said, suggests it's worth encouraging intuitive thinkers to change up their problem-solving style to come up with new ideas.

Curiously, it's relatively easy to influence a person's cognitive approach to a problem, the researchers found. At the same time, the research didn't suggest that either approach — rational or intuitive thinking — was inherently better than the other. In fact, they wrote, future research on the topic ought to analyze what happens when subjects are encourage to take a hybrid rational-intuitive approach.

In the meantime, whether you're trying to lure customers to your new coffee shop, or figuring out the best ending to your crime novel, try attacking the problem with the thinking style that's least familiar to you. To truly think outside the box, the first thing to do is peer over the side to see what style of thinking most often boxes you in.

------

This article originally appeared on Rice Business Wisdom.

Erik Dane is an associate professor of management at the Jones Graduate School of Business at Rice University.

Researchers found that there's still very little conceptual explanation for how individual creative attempts become organizational innovation. Getty Images

Researchers find there's not much data on how creativity becomes change in the workplace

Houston Voices

Innovation and creativity are crucial tools that all businesses need in order to prosper. Research into how these tools work covers a broad area and crosses various disciplines. In the past, much of this research has been divided: One side looked at innovation, which focuses on how ideas are implemented, while the other examined creativity, which focuses on coming up with new ideas. Rice Business Professor Jing Zhou and colleagues addressed this divide by reviewing research going back a little more than a decade, looking for key measures that could be used as guidelines for future research.

Zhou and her colleagues began their work by reviewing the practical and theoretical perspectives of innovation and creativity in the workplace. They then created a framework for future research after identifying prominent theories.

Before getting started, however, they needed clear definitions for both innovation and creativity. Creativity, Zhou proposed, centers on idea generation. It's the first step toward innovation. Innovation, she concluded, stresses the implementation of ideas. This happens at different levels: individual, team, organization, or across multiple levels.

At the team level of innovation, research has progressed significantly, the authors found. They suggest that researchers now focus on other aspects of team-level research, such as team environment, leadership and facilitators of workgroups.

At the organizational level, Zhou and her colleagues found that numerous studies looked at the factors that influence innovation. But, they concluded, there's still very little conceptual explanation for how individual creative attempts become organizational innovation.

The team's review reveals the enormous strides that researchers have made in the field of creativity and innovation in recent years, and clarifies how their studies have been used by different organizations.

Despite advances in the field, however, there are still shortcomings. Many studies, for example, are hampered by problematic research approaches. Some lack theoretical groundwork and few take an inclusive approach to multi-level studies.

Zhou and her colleagues argue that addressing these limitations would be a tremendous leap forward in understanding creativity and innovation in the workplace. Without innovation, companies can't prosper and progress. The same holds true for academic research into these lifelines of business success: It will need to expand and dig deeper or cease to be relevant in practice.

------

This article originally appeared on Rice Business Wisdom.

Jing Zhou is the Houston Endowment Professor of Management and Director for Asian Management Research and Education at Jones Graduate School of Business at Rice University.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

​Planned UT Austin med center, anchored by MD Anderson, gets $100M gift​

med funding

The University of Texas at Austin’s planned multibillion-dollar medical center, which will include a hospital run by Houston’s University of Texas MD Anderson Cancer Center, just received a $100 million boost from a billionaire husband-and-wife duo.

Tench Coxe, a former venture capitalist who’s a major shareholder in chipmaking giant Nvidia, and Simone Coxe, co-founder and former CEO of the Blanc & Otus PR firm, contributed the $100 million—one of the largest gifts in UT history. The Coxes live in Austin.

“Great medical care changes lives,” says Simone Coxe, “and we want more people to have access to it.”

The University of Texas System announced the medical center project in 2023 and cited an estimated price tag of $2.5 billion. UT initially said the medical center would be built on the site of the Frank Erwin Center, a sports and entertainment venue on the UT Austin campus that was demolished in 2024. The 20-acre site, north of downtown and the state Capitol, is near Dell Seton Medical Center, UT Dell Medical School and UT Health Austin.

Now, UT officials are considering a bigger, still-unidentified site near the Domain mixed-use district in North Austin, although they haven’t ruled out the Erwin Center site. The Domain development is near St. David’s North Medical Center.

As originally planned, the medical center would house a cancer center built and operated by MD Anderson and a specialty hospital built and operated by UT Austin. Construction on the two hospitals is scheduled to start this year and be completed in 2030. According to a 2025 bid notice for contractors, each hospital is expected to encompass about 1.5 million square feet, meaning the medical center would span about 3 million square feet.

Features of the MD Anderson hospital will include:

  • Inpatient care
  • Outpatient clinics
  • Surgery suites
  • Radiation, chemotherapy, cell, and proton treatments
  • Diagnostic imaging
  • Clinical drug trials

UT says the new medical center will fuse the university’s academic and research capabilities with the medical and research capabilities of MD Anderson and Dell Medical School.

UT officials say priorities for spending the Coxes’ gift include:

  • Recruiting world-class medical professionals and scientists
  • Supporting construction
  • Investing in technology
  • Expanding community programs that promote healthy living and access to care

Tench says the opportunity to contribute to building an institution from the ground up helped prompt the donation. He and others say that thanks to MD Anderson’s participation, the medical center will bring world-renowned cancer care to the Austin area.

“We have a close friend who had to travel to Houston for care she should have been able to get here at home. … Supporting the vision for the UT medical center is exactly the opportunity Austin needed,” he says.

The rate of patients who leave the Austin area to seek care for serious medical issues runs as high as 25 percent, according to UT.

New Rice Brain Institute partners with TMC to award inaugural grants

brain trust

The recently founded Rice Brain Institute has named the first four projects to receive research awards through the Rice and TMC Neuro Collaboration Seed Grant Program.

The new grant program brings together Rice faculty with clinicians and scientists at The University of Texas Medical Branch, Baylor College of Medicine, UTHealth Houston and The University of Texas MD Anderson Cancer Center. The program will support pilot projects that address neurological disease, mental health and brain injury.

The first round of awards was selected from a competitive pool of 40 proposals, and will support projects that reflect Rice Brain Institute’s research agenda.

“These awards are meant to help teams test bold ideas and build the collaborations needed to sustain long-term research programs in brain health,” Behnaam Aazhang, Rice Brain Institute director and co-director of the Rice Neuroengineering Initiative, said in a news release.

The seed funding has been awarded to the following principal investigators:

  • Kevin McHugh, associate professor of bioengineering and chemistry at Rice, and Peter Kan, professor and chair of neurosurgery at the UTMB. McHugh and Kan are developing an injectable material designed to seal off fragile, abnormal blood vessels that can cause life-threatening bleeding in the brain.
  • Jerzy Szablowski, assistant professor of bioengineering at Rice, and Jochen Meyer, assistant professor of neurology at Baylor. Szablowski and Meyer are leading a nonsurgical, ultrasound approach to deliver gene-based therapies to deep brain regions involved in seizures to control epilepsy without implanted electrodes or invasive procedures.
  • Juliane Sempionatto, assistant professor of electrical and computer engineering at Rice, and Aaron Gusdon, associate professor of neurosurgery at UTHealth Houston. Sempionatto and Gusdon are leading efforts to create a blood test that can identify patients at high risk for delayed brain injury following aneurysm-related hemorrhage, which could lead to earlier intervention and improved outcomes.
  • Christina Tringides, assistant professor of materials science and nanoengineering at Rice, and Sujit Prabhu, professor of neurosurgery at MD Anderson, who are working to reduce the risk of long-term speech and language impairment during brain tumor removal by combining advanced brain recordings, imaging and noninvasive stimulation.

The grants were facilitated by Rice’s Educational and Research Initiatives for Collaborative Health (ENRICH) Office. Rice says that the unique split-funding model of these grants could help structure future collaborations between the university and the TMC.

The Rice Brain Institute launched this fall and aims to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders. Last month, the university's Shepherd School of Music also launched the Music, Mind and Body Lab, an interdisciplinary hub that brings artists and scientists together to study the "intersection of the arts, neuroscience and the medical humanities." Read more here.

Your data center is either closer than you think or much farther away

houston voices

A new study shows why some facilities cluster in cities for speed and access, while others move to rural regions in search of scale and lower costs. Based on research by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard).

Key findings:

  • Third-party colocation centers are physical facilities in close proximity to firms that use them, while cloud providers operate large data centers from a distance and sell access to virtualized computing resources as on‑demand services over the internet.
  • Hospitals and financial firms often require urban third-party centers for low latency and regulatory compliance, while batch processing and many AI workloads can operate more efficiently from lower-cost cloud hubs.
  • For policymakers trying to attract data centers, access to reliable power, water and high-capacity internet matter more than tax incentives.

Recent outages and the surge in AI-driven computing have made data center siting decisions more consequential than ever, especially as energy and water constraints tighten. Communities invest public dollars on the promise of jobs and growth, while firms weigh long-term commitments to land, power and connectivity.

Against that backdrop, a critical question comes into focus: Where do data centers get built — and what actually drives those decisions?

A new study by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard Business School) provides the first large-scale statistical analysis of data center location strategies across the United States. It offers policymakers and firms a clearer starting point for understanding how different types of data centers respond to economic and strategic incentives.

Forthcoming in the journal Strategy Science, the study examines two major types of infrastructure: third-party colocation centers that lease server space to multiple firms, and hyperscale cloud centers owned by providers like Amazon, Google and Microsoft.

Two Models, Two Location Strategies

The study draws on pre-pandemic data from 2018 and 2019, a period of relative geographic stability in supply and demand. This window gives researchers a clean baseline before remote work, AI demand and new infrastructure pressures began reshaping internet traffic patterns.

The findings show that data centers follow a bifurcated geography. Third-party centers cluster in dense urban markets, where buyers prioritize proximity to customers despite higher land and operating costs. Cloud providers, by contrast, concentrate massive sites in a small number of lower-density regions, where electricity, land and construction are cheaper and economies of scale are easier to achieve.

Third-party data centers, in other words, follow demand. They locate in urban markets where firms in finance, healthcare and IT value low latency, secure storage, and compliance with regulatory standards.

Using county-level data, the researchers modeled how population density, industry mix and operating costs predict where new centers enter. Every U.S. metro with more than 700,000 residents had at least one third-party provider, while many mid-sized cities had none.

ImageThis pattern challenges common assumptions. Third-party facilities are more distributed across urban America than prevailing narratives suggest.

Customer proximity matters because some sectors cannot absorb delay. In critical operations, even slight pauses can have real consequences. For hospital systems, lag can affect performance and risk exposure. And in high-frequency trading, milliseconds can determine whether value is captured or lost in a transaction.

“For industries where speed is everything, being too far from the physical infrastructure can meaningfully affect performance and risk,” Pan Fang says. “Proximity isn’t optional for sectors that can’t absorb delay.”

The Economics of Distance

For cloud providers, the picture looks very different. Their decisions follow a logic shaped primarily by cost and scale. Because cloud services can be delivered from afar, firms tend to build enormous sites in low-density regions where power is cheap and land is abundant.

These facilities can draw hundreds of megawatts of electricity and operate with far fewer employees than urban centers. “The cloud can serve almost anywhere,” Pan Fang says, “so location is a question of cost before geography.”

The study finds that cloud infrastructure clusters around network backbones and energy economics, not talent pools. Well-known hubs like Ashburn, Virginia — often called “Data Center Alley” — reflect this logic, having benefited from early network infrastructure that made them natural convergence points for digital traffic.

Local governments often try to lure data centers with tax incentives, betting they will create high-tech jobs. But the study suggests other factors matter more to cloud providers, including construction costs, network connectivity and access to reliable, affordable electricity.

When cloud centers need a local presence, distance can sometimes become a constraint. Providers often address this by working alongside third-party operators. “Third-party centers can complement cloud firms when they need a foothold closer to customers,” Pan Fang says.

That hybrid pattern — massive regional hubs complementing strategic colocation — may define the next phase of data center growth.

Looking ahead, shifts in remote work, climate resilience, energy prices and AI-driven computing may reshape where new facilities go. Some workloads may move closer to users, while others may consolidate into large rural hubs. Emerging data-sovereignty rules could also redirect investment beyond the United States.

“The cloud feels weightless,” Pan Fang says, “but it rests on real choices about land, power and proximity.”

---

This article originally appeared on Rice Business Wisdom. Written by Scott Pett.

Pan Fang and Greenstein (2025). “Where the Cloud Rests: The Economic Geography of Data Centers,” forthcoming in Strategy Science.