The process of breaking up research is dangerous one, according to UH's Big Idea. Graphic by Miguel Tovar/University of Houston

Salami slicing, breaking a paper on a single study up into smaller “slices” and publishing them in more than one journal, is broadly discouraged and considered unethical. Why does the practice persist? What do PIs believe are the benefits of doing it?

Two problems

Breaking up research into smaller slices can have serious consequences for scientific integrity. Researchers, especially younger researchers, may get used to looking at data in smaller pieces and not as a whole. This is dangerous from an academic perspective as valuable conclusions, that could have been derived if the data were presented as a whole, are overlooked.

Further, salami slicing of data may do more harm than good to a researcher’s career over time because it significantly reduces their chances of publishing in high impact journals, thereby lessening the weight of their accrued body of work.

One reason salami slicing still persists, is that there is a veritable avalanche of papers vying for publication. And the number seems to be steadily increasing.

“The academic market became more competitive after the nation’s economic downturn, in 2008,” said Rodica Damian, UH associate professor of psychology. “We saw a lot of competition between those with Ph.D.s and those who were conducting postdoc research. Before, you needed a postdoc if you were in Biology, for instance – but you didn’t need one if you had a doctorate in Psychology. That is no longer the case.”

Another reason salami slicing might persist is that advisors may suggest to a graduate student that they write a series of simpler papers as opposed to a more complex paper consisting of multiple measurements. A researcher might get these “single-lens papers” published much more quickly than their multi-faceted counterparts, due to the amount of background research the journal’s editors need to do on the more complicated papers.

How to avoid self-plagiarism

Salami slicing is not necessarily self-plagiarism, but often the practice does feature a large amount of “text overlap,” according to Miguel Roig, Ph.D. on the website of the Office of Research Integrity for the U.S. Department of Health and Human Services. One example Roig gives is as follows:

“Several months ago, for example, we received a manuscript describing a controlled intervention in a birthing center. The authors sent the results on the mothers to us, and the results on the infants to another journal. The two outcomes would have more appropriately been reported together…The important point is that readers need to be made aware that the data being reported were collected in the context of a larger study.”

The Big Idea

An article published by the NIH suggests this rule of thumb: “If the ‘slice’ of the study in question tests a different hypothesis as opposed to the larger study or has a distinct methodology or populations being studied, then it is acceptable to publish it separately.”

However, when a colleague is trying to do a meta analysis, they need to know what your study actually measured. “One thing you can do to avoid salami slicing,” said Damian, “is to pre-register all the projects you’re planning to do from a specific data set. Then ask yourself, do they use different hypotheses, measures, literatures, etc.”

After all is said and done, are they substantively methodically different research papers? If so, they can be sent to different, separate journals.

------

This article originally appeared on the University of Houston's The Big Idea. Sarah Hill, the author of this piece, is the communications manager for the UH Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space-tested cancer drug advances to clinical trials

mission critical

A cancer-fighting drug tested aboard several Axiom Space missions is moving forward to clinical trials.

Rebecsinib, which targets a cancer cloning and immune evasion gene, ADAR1, has received FDA approval to enter clinical trials under active Investigational New Drug (IND) status, according to a news release. The drug was tested aboard Axiom Mission 2 (Ax-2) and Axiom Mission 3 (Ax-3). It was developed by Aspera Biomedicine, led by Dr. Catriona Jamieson, director of the UC San Diego Sanford Stem Cell Institute (SSCI).

The San Diego-based Aspera team and Houston-based Axiom partnered to allow Rebecsinib to be tested in microgravity. Tumors have been shown to grow more rapidly in microgravity and even mimic how aggressive cancers can develop in patients.

“In terms of tumor growth, we see a doubling in growth of these little mini-tumors in just 10 days,” Jamieson explained in the release.

Rebecsinib took part in the patient-derived tumor organoid testing aboard the International Space Station. Similar testing is planned to continue on Axiom Station, the company's commercial space station that's currently under development.

Additionally, the drug will be tested aboard Ax-4 under its active IND status, which was targeted to launch June 25.

“We anticipate that this monumental mission will inform the expanded development of the first ADAR1 inhibitory cancer stem cell targeting drug for a broad array of cancers," Jamieson added.

According to Axiom, the milestone represents the potential for commercial space collaborations.

“We’re proud to work with Aspera Biomedicines and the UC San Diego Sanford Stem Cell Institute, as together we have achieved a historic milestone, and we’re even more excited for what’s to come,” Tejpaul Bhatia, the new CEO of Axiom Space, said in the release. “This is how we crack the code of the space economy – uniting public and private partners to turn microgravity into a launchpad for breakthroughs.”

Chevron enters the lithium market with major Texas land acquisition

to market

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.

---

This article originally appeared on EnergyCapital.