A unique innovation from the University of Houston has the potential to help stroke victims recover mobility. Photo courtesy of UH

A University of Houston professor has taking a huge step in advancing his game-changing stroke recovery tech.

Jose Luis Contreras-Vidal, the director of the UH BRAIN Center, recently published his work on a noninvasive brain-machine in a summer issue of the journal Sensors. InnovationMap first reported on Contreras-Vidal's technology in 2022, when it was being tested.

Contreras-Vidal's device uses a wireless, mobile dry-electrode headset placed on the scalp to convert electroencephalography (EEG) recordings (or measurements of electrical activity in different parts of the brain) to interface with a closed-loop brain–computer (BCI) and communicate with exoskeleton devices. Together, the technology triggers robotic movement based on the wearer's brain activity.

The technology has potential to boost cortical plasticity after a stroke, which can improve motor skills recovery.

According to a statement from UH, a patent is pending on Contreras-Vidal's BCI algorithm and the self-positioning dry electrode bracket used on the scalp. The technology has also now been validated and tested at the University of Houston.

Contreras-Vidal says the technology makes stroke recovery easier for the user and even possible at home.

“Most commercial EEG-based BCI systems are tethered to immobile processing hardware or require complex programming or set-up, making them difficult to deploy outside of the clinic or laboratory without technical assistance or extensive training," he says in a statement. "A portable and wireless BCI system is highly preferred so it can be used outside lab in clinical and non-clinical mobile applications at home, work, or play.”

Additionally, the technology uses off-the-shelf components and is adjustable to fit about 90 percent of the population, according to UH.

"Current commercial EEG amplifiers and BCI headsets are prohibitively expensive, lack interoperability, or fail to provide a high signal quality or closed-loop operation, which are vital for BCI applications,” Contreras-Vidal adds.

The development of this technology was originally funded in part by an $813,999 grant from the National Science Foundation’s Division of Translational Impacts. UH reports that about 795,000 people in the United States suffer from a stroke annually.

Other leaders in Houston’s medical industry have tapped into innovative ways to treat and rehabilitate stroke patients in recent years. Baylor St. Luke's Hospital began using AI to reduce the time it takes to treat patients who've suffered from a stroke in 2021.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC launches new biotech partnership with Republic of Korea

international collaboration

Houston's Texas Medical Center has launched its new TMC Republic of Korea BioBridge.

The new partnership brings together the TMC with the Osong Medical Innovation Foundation, or KBIOHealth. The Biobridge aims to support the commercialization of Korean biotech and life science startups in the U.S., foster clinical research, and boost collaboration in the public, private and academic sectors.

Through the partnership, TMC will also develop a Global Innovators Launch Pad to foster U.S. market entry for international health care companies. Founders will be selected to participate in the 10-week program at the TMC Innovation Factory in Houston.

“Gene and cell therapies are driving biotech innovation, opening possibilities for treating diseases once thought untreatable," William McKeon, president and CEO of the Texas Medical Center, said in a news release. "Expanding biomanufacturing capacity is essential to delivering the next wave of these therapies, and partnerships with leading innovators will strengthen our efforts in Houston and internationally.”

McKeon officially signed the TMC Korea BioBridge Memorandum of Understanding with Myoung Su Lee, chairman of KBIOHealth, in South Korea in October.

"This collaboration marks a significant milestone for Korea’s biohealth ecosystem, creating a powerful bridge between Osong and Houston," Lee added in the release. "By combining KBIOHealth’s strength in research infrastructure and Korea’s biotech talent with TMC’s global network and accelerator platform, we aim to accelerate innovation and bring transformative solutions to patients worldwide.”

This is the seventh international strategic partnership for the TMC. It launched its first BioBridge with the Health Informatics Society of Australia in 2016. It launched its TMC Japan BioBridge, focused on advancing cancer treatments, last year. It also has BioBridge partnerships with the Netherlands, Ireland, Denmark and the United Kingdom.