At an event at the Ion, OpenStax and Rice University announced a $90 million NSF-backed initiative. Photo by Jeff Fitlow/Rice

An educational technology company based out of Rice University has received $90 million to create and lead a research and development hub for inclusive learning and education research. It's the largest research award in the history of the university.

OpenStax received the grant funding from the U.S. National Science Foundation for a five-year project create the R&D hub called SafeInsights, which "will enable extensive, long-term research on the predictors of effective learning while protecting student privacy," reads a news release from Rice. It's the NSF's largest single investment commitment to national sale education R&D infrastructure.

“We are thrilled to announce an investment of $90 million in SafeInsights, marking a significant step forward in our commitment to advancing scientific research in STEM education,” NSF Director Sethuraman Panchanathan says in the release. “There is an urgent need for research-informed strategies capable of transforming educational systems, empowering our nation’s workforce and propelling discoveries in the science of learning.

"By investing in cutting-edge infrastructure and fostering collaboration among researchers and educators, we are paving the way for transformative discoveries and equitable opportunities for learners across the nation.”

SafeInsights is funded through NSF’s Mid-scale Research Infrastructure-2 (Mid-scale RI-2) program and will act as a central hub for 80 partners and collaborating institutions.

“SafeInsights represents a pivotal moment for Rice University and a testament to our nation’s commitment to educational research,” Rice President Reginald DesRoches adds. “It will accelerate student learning through studies that result in more innovative, evidence-based tools and practices.”

Richard Baraniuk, who founded OpenStax and is a Rice professor, will lead SafeInsights. He says he hopes the initiative will allow progress to be made for students learning in various contexts.

“Learning is complex," Baraniuk says in the release. "Research can tackle this complexity and help get the right tools into the hands of educators and students, but to do so, we need reliable information on how students learn. Just as progress in health care research sparked stunning advances in personalized medicine, we need similar precision in education to support all students, particularly those from underrepresented and low-income backgrounds.”

OpenStax awarded $90M to lead NSF research hub for transformational learning and education researchwww.youtube.com

A new program at Rice University will educate recent graduates or returning learners on key opportunities within energy transition. Photo via Rice.edu

New program to produce innovative, sustainability-focused workforce for energy industry

coming this fall

A Houston university has committed to preparing the workforce for the future of energy with its newest program.

Rice University announced plans to launch the Master of Energy Transition and Sustainability, or METS, in the fall. The 31 credit-hour program, which is a joint initiative between Rice's George R. Brown School of Engineering and the Wiess School of Natural Sciences, "will train graduates to face emergent challenges in the energy sector and drive innovation in sustainability across a wide range of domains from technology to economics and policy," according to the university.

“We believe that METS graduates will emerge as leaders and innovators in the energy industry, equipped with the skills and knowledge to drive sustainable solutions,” Rice President Reginald DesRoches says in the release. “Together we can shape a brighter, more resilient and cleaner future for generations to come.”

Some of the focus points of the program will be geothermal, hydrogen, and critical minerals recovery. Additionally, there will be education around new technologies within traditional oil and gas industry, like carbon capture and sequestration and subsurface storage.

“We are excited to welcome the inaugural cohort of METS students in the fall of 2024,” Thomas Killian, dean of the Wiess School of Natural Sciences and a professor of physics and astronomy, says in the release. “This program offers a unique opportunity for students to delve into cutting-edge research, tackle real-world challenges and make a meaningful impact on the future of energy.”

The new initiative is just the latest stage in Rice's relationship with the energy industry.

“This is an important initiative for Rice that is very much aligned with the university’s long-term commitment to tackle urgent generational challenges, not only in terms of research — we are well positioned to make significant contributions on that front — but also in terms of education,” says Michael Wong, the Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and a professor of chemistry, materials science and nanotechnology and of civil and environmental engineering. “We want prospective students to know that they can confidently learn the concepts and tools they need to thrive as sustainability and energy transition experts and thought leaders.”

------

This article originally ran on EnergyCapital.

A research team housed out of the newly launched Rice Biotech Launch Pad received funding to scale tech that could slash cancer deaths in half. Photo via Rice University

Rice researchers score $45M from NIH for cancer-fighting tech

freshly funded

A research funding agency has deployed capital into a team at Rice University that's working to develop a technology that could cut cancer-related deaths in half.

Rice researchers received $45 million from the National Institutes of Health's Advanced Research Projects Agency for Health, or ARPA-H, to scale up development of a sense-and-respond implant technology. Rice bioengineer Omid Veiseh leads the team developing the technology as principal investigator.

“Instead of tethering patients to hospital beds, IV bags and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” he says in a news release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump. But for cancer immunotherapy, it’s revolutionary.”

Joining Veiseh on the 19-person research project named THOR, which stands for “targeted hybrid oncotherapeutic regulation,” is Amir Jazaeri, co-PI and professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center. The device they are developing is called HAMMR, or hybrid advanced molecular manufacturing regulator.

“Cancer cells are continually evolving and adapting to therapy. However, currently available diagnostic tools, including radiologic tests, blood assays and biopsies, provide very infrequent and limited snapshots of this dynamic process," Jazaeri adds. "As a result, today’s therapies treat cancer as if it were a static disease. We believe THOR could transform the status quo by providing real-time data from the tumor environment that can in turn guide more effective and tumor-informed novel therapies.”

With a national team of engineers, physicians, and experts across synthetic biology, materials science, immunology, oncology, and more, the team will receive its funding through the Rice Biotech Launch Pad, a newly launched initiative led by Veiseh that exists to help life-saving medical innovation scale quickly.

"Rice is proud to be the recipient of the second major funding award from the ARPA-H, a new funding agency established last year to support research that catalyzes health breakthroughs," Rice President Reginald DesRoches says. "The research Rice bioengineer Omid Veiseh is doing in leading this team is truly groundbreaking and could potentially save hundreds of thousands of lives each year. This is the type of research that makes a significant impact on the world.”

The initial focus of the technology will be on ovarian cancer, and this funding agreement includes a first-phase clinical trial of HAMMR for the treatment of recurrent ovarian cancer that's expected to take place in the fourth year of THOR’s multi-year project.

“The technology is broadly applicable for peritoneal cancers that affect the pancreas, liver, lungs and other organs,” Veiseh says. “The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology. We'll be able to build on that experience. We have already demonstrated a unique model to go from concept to clinical trial within five years, and HAMMR is the next iteration of that approach.”

The 250,000-square-foot building is the new home for four key research areas at Rice: advanced materials, quantum science and computing, urban research and innovation, and the energy transition. Photo courtesy of Rice

University opens its newest, largest campus research facility in Houston

research @ rice

As the academic year officially kicks off, professors have started moving in and Rice University has opened its largest core campus research facility, The Ralph S. O’Connor Building for Engineering and Science.

The 250,000-square-foot building is the new home for four key research areas at Rice: advanced materials, quantum science and computing, urban research and innovation, and the energy transition. The university aims for the space to foster collaboration and innovation between the disciplines.

"To me it really speaks to where Rice wants to go as we grow our research endeavors on campus," Michael Wong, Chair of the Department of Chemical and Biomolecular Engineering, whose lab is located in the new facility, said in a video from Rice. "It has to be a mix of engineering and science to do great things. We don’t want to do good things, we want to do great things. And this building will allow us to do that."

At $152 million, the state-of-the-art facility features five floors of labs, classrooms and seminar rooms. Common spaces and a cafe encourage communication between departments, and the top level is home to a reception suite and outdoor terrace with views of the Houston skyline.

It replaces 1940s-era Abercrombie Engineering Laboratory on campus, which was demolished in 2021 to make way for the new facilities. The iconic sculpture "Energy" by Rice alumnus William McVey that was part of the original building was preserved with plans to incorporate it into the new space.

The new building will be dedicated to its namesake Ralph O'Connor on Sept. 14 in Rice's engineering quad at 3 p.m. O'Connor, a Johns Hopkins University grad, became a fan Rice when he moved to Houston to work in the energy industry in the 1950s.

The former president and CEO of the Highland Oil Company and founder of Ralph S. O’Connor & Associates left the university $57 million from his estate after he died in 2018. The gift was the largest donation from an estate in Rice's history and brought his donations to the university, including those to many buildings on campus and endowments and scholarships, to a total of $85 million.

“How fitting that this building will be named after Ralph O’Connor,” Rice President Reginald DesRoches said in a statement last summer. “He was a man who always looked to the future, and the future is what this new engineering and science building is all about. Discoveries made within those walls could transform the world. Anybody who knew Ralph O’Connor knows he would have loved that.”

The dedication event will be open to the public. It will feature remarks from DesRoches, as well as Rice Provost Amy Dittmar, Dean of the Wiess School of Natural Sciences Thomas Killian, Chair of the Rice Board of Trustees Robert Ladd and Dean of the George R. Brown School of Engineering Luay Nakhleh. A reception and tours of the new building will follow.

An annual ranking recognized Rice University again — but the Houston school ranked a tad lower this year. Photo courtesy of Rice

Report: Rice University again ranks among the top schools in nation

hooting in Houston

Rice University has earned yet another accolade worth hooting about.

Niche, an education review and ranking website, has named Rice the ninth best college in the U.S., down from No. 6 last year. The Houston university receives an A+ in nine of the 12 ranking categories, including academics, diversity, and value. It gets an A for the party scene, a B+ for athletics, and a B for safety.

“We’re proud that Niche once again rates Rice not only one of the nation’s top universities, but also one of the nation’s best college values,” university President Reginald DesRoches said in 2022. “This is especially gratifying because Niche reflects the opinions of students and parents who know firsthand what outstanding education opportunities Rice continues to offer.”

Rice regularly ranks highly on lists of the best colleges and universities in the country, including those published by Niche, Forbes, and U.S. News & World Report.

“Rice is an awesome place. I went to Rice because I wanted professors who actually wanted to see their students succeed, and I can confidently say that’s what I found at Rice,” a student wrote in a Niche review. “The classes are thorough but the tests are very reasonable and focus on the material we learned in class.”

Topping Niche’s national list is Yale University, followed by Stanford University, the Massachusetts Institute of Technology, Harvard University, Princeton University, Columbia University, the University of Pennsylvania, and Dartmouth College.

Rice comes in at No. 12 on Niche’s list of the “best value colleges” in the U.S. and ranks first among the best colleges in Texas. Here are the top 10 Texas schools, including the eighth-ranked University of Houston:

1. Rice University
2. University of Texas at Austin
3. Texas A&M University (College Station)
4. Trinity University (San Antonio)
5. Southern Methodist University (University Park)
6. Texas Christian University (Fort Worth)
7. Texas Tech University (Lubbock)
8. University of Houston
9. University of Texas Permian Basin (Odessa)
10. Baylor University (Waco)

Other Houston-area schools in the Texas ranking are:

  • University of Houston – Clear Lake (No. 13)
  • University of St. Thomas (No. 26)
  • University of Houston – Downtown (No. 39)
  • Prairie View A&M University (No. 43)

“Choosing where to go to college is easily one of the most significant — and expensive — decisions of a person’s life. Niche’s mission is to ensure that every college-bound student has access to easy, transparent and free resources … to help them find their best fit,” Luke Skurman, founder and CEO of Niche, says in a news release.

In his new role, Adrian Trömel will oversee the creation of the Rice Nexus, an innovation hub within the Ion that aims to bridge the gap between the university and Houston's innovation ecosystem. Photo courtesy of Rice

University names Houston founder to leadership role to oversee new innovation hub

next up for the rice nexus

Rice University’s Office of Innovation has named Houston materials scientist-turned-entrepreneur Adrian Trömel as its new assistant vice president for strategy and investments.

Trömel founded non-invasive neurostimulation medical device company CNX Medical at the Texas Medical Innovation Institute in 2019 and most recently served as chief growth officer for Hamilton Health Box, which brings an on-site care team to company offices.

In his new role, Trömel will oversee the creation of the Rice Nexus, an innovation hub within the Ion that aims to bridge the gap between the university and Houston's innovation ecosystem. He will also lead the creation of a translational research grant fund and a university-affiliated venture fund for Rice-affiliated entrepreneurs, according to the release.

“Adrian brings a broad, multidisciplinary background to the team at the Office of Innovation,” Paul Cherukuri, chief innovation officer at Rice, says in a statement. “As a materials scientist and entrepreneur, his experience can be brought to bear to help faculty and students spin out new technologies and start new ventures.”

Trömel holds a bachelor’s and master’s in materials sciences from the École polytechnique fédérale de Lausanne (EPFL) and the Netherlands and an MBA from Rice. He is also an angel investor and a lead lecturer for Rice's New Enterprise MBA ELab.

In addition to his professional work, he serves as the foreign trade advisor to the Ministry of Economy of Luxembourg.

Rice has been building up its Office of Innovation in the last few years. In August 2022, the university named Cherukuri as the inaugural vice president for innovation. According to Rice President Reginald DesRoches, the Office of Innovation and the Cherukuri's position were created to ensure Rice is a leader within Houston and the global innovation ecosystem.

This past March, Cherukuri announced plans to develop the Rice Nexus.

"We've got so much technology in our labs that we've never shared with the world," he said at the time. "We're going to demonstrate that in the Ion."

Click here to listen to a full interview with Cherukuri about thought leadership in Houston, Rice University, and the challenges of advancing research and technology to address society's greatest needs on the Houston Innovators Podcast.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers create AI model to tap into how brain activity relates to illness

brainiac

Houston researchers are part of a team that has created an AI model intended to understand how brain activity relates to behavior and illness.

Scientists from Baylor College of Medicine worked with peers from Yale University, University of Southern California and Idaho State University to make Brain Language Model, or BrainLM. Their research was published as a conference paper at ICLR 2024, a meeting of some of deep learning’s greatest minds.

“For a long time we’ve known that brain activity is related to a person’s behavior and to a lot of illnesses like seizures or Parkinson’s,” Dr. Chadi Abdallah, associate professor in the Menninger Department of Psychiatry and Behavioral Sciences at Baylor and co-corresponding author of the paper, says in a press release. “Functional brain imaging or functional MRIs allow us to look at brain activity throughout the brain, but we previously couldn’t fully capture the dynamic of these activities in time and space using traditional data analytical tools.

"More recently, people started using machine learning to capture the brain complexity and how it relates it to specific illnesses, but that turned out to require enrolling and fully examining thousands of patients with a particular behavior or illness, a very expensive process,” Abdallah continues.

Using 80,000 brain scans, the team was able to train their model to figure out how brain activities related to one another. Over time, this created the BrainLM brain activity foundational model. BrainLM is now well-trained enough to use to fine-tune a specific task and to ask questions in other studies.

Abdallah said that using BrainLM will cut costs significantly for scientists developing treatments for brain disorders. In clinical trials, it can cost “hundreds of millions of dollars,” he said, to enroll numerous patients and treat them over a significant time period. By using BrainLM, researchers can enroll half the subjects because the AI can select the individuals most likely to benefit.

The team found that BrainLM performed successfully in many different samples. That included predicting depression, anxiety and PTSD severity better than other machine learning tools that do not use generative AI.

“We found that BrainLM is performing very well. It is predicting brain activity in a new sample that was hidden from it during the training as well as doing well with data from new scanners and new population,” Abdallah says. “These impressive results were achieved with scans from 40,000 subjects. We are now working on considerably increasing the training dataset. The stronger the model we can build, the more we can do to assist with patient care, such as developing new treatment for mental illnesses or guiding neurosurgery for seizures or DBS.”

For those suffering from neurological and mental health disorders, BrainLM could be a key to unlocking treatments that will make a life-changing difference.

Houston-based cleantech unicorn named among annual top disruptors

on the rise

Houston-based biotech startup Solugen is making waves among innovative companies.

Solugen appears at No. 36 on CNBC’s annual Disruptor 50 list, which highlights private companies that are “upending the classic definition of disruption.” Privately owned startups founded after January 1, 2009, were eligible for the Disruptor 50 list.

Founded in 2016, Solugen replaces petroleum-based products with plant-derived substitutes through its Bioforge manufacturing platform. For example, it uses engineered enzymes and metal catalysts to convert feedstocks like sugar into chemicals that have traditionally been made from fossil fuels, such as petroleum and natural gas.

Solugen has raised $643 million in funding and now boasts a valuation of $2.2 billion.

“Sparked by a chance medical school poker game conversation in 2016, Solugen evolved from prototype to physical asset in five years, and production hit commercial scale shortly thereafter,” says CNBC.

Solugen co-founders Gaurab Chakrabarti and Sean Hunt received the Entrepreneur of The Year 2023 National Award, presented by professional services giant EY.

“Solugen is a textbook startup launched by two partners with $10,000 in seed money that is revolutionizing the chemical refining industry. The innovation-driven company is tackling impactful, life-changing issues important to the planet,” Entrepreneur of The Year judges wrote.

In April 2024, Solugen broke ground on a Bioforge biomanufacturing plant in Marshall, Minnesota. The 500,000-square-foot, 34-acre facility arose through a Solugen partnership with ADM. Chicago-based ADM produces agricultural products, commodities, and ingredients. The plant is expected to open in the fall of 2025.

“Solugen’s … technology is a transformative force in sustainable chemical manufacturing,” says Hunt. “The new facility will significantly increase our existing capabilities, enabling us to expand the market share of low-carbon chemistries.”

Houston cleantech company tests ​all-electric CO2-to-fuel production technology

RESULTS ARE IN

Houston-based clean energy company Syzygy Plasmonics has successfully tested all-electric CO2-to-fuel production technology at RTI International’s facility at North Carolina’s Research Triangle Park.

Syzygy says the technology can significantly decarbonize transportation by converting two potent greenhouse gases, carbon dioxide and methane, into low-carbon jet fuel, diesel, and gasoline.

Equinor Ventures and Sumitomo Corp. of Americas sponsored the pilot project.

“This project showcases our ability to fight climate change by converting harmful greenhouse gases into fuel,” Trevor Best, CEO of Syzygy, says in a news release.

“At scale,” he adds, “we’re talking about significantly reducing and potentially eliminating the carbon intensity of shipping, trucking, and aviation. This is a major step toward quickly and cost effectively cutting emissions from the heavy-duty transport sector.”

At commercial scale, a typical Syzygy plant will consume nearly 200,000 tons of CO2 per year, the equivalent of taking 45,000 cars off the road.

“The results of this demonstration are encouraging and represent an important milestone in our collaboration with Syzygy,” says Sameer Parvathikar, director of renewable energy and energy storage at RTI.

In addition to the CO2-to-fuel demonstration, Syzygy's Ammonia e-Cracking™ technology has completed over 2,000 hours of performance and optimization testing at its plant in Houston. Syzygy is finalizing a site and partners for a commercial CO2-to-fuel plant.

Syzygy is working to decarbonize the chemical industry, responsible for almost 20 percent of industrial CO2 emissions, by using light instead of combustion to drive chemical reactions.

------

This article originally ran on EnergyCapital.