Penrose's advance process control software can increase production by 10 to 15 percent in downstream oil and gas refineries. Pexels

In the next 30 years, the world will need 30 percent more energy due to population growth. While energy production will increase to keep up with demand, there is an increasing concern with the impact on the environment.

"How do you produce more energy without emission increases or more air quality pollution?" asks Erdin Guma, CFO of Penrose Technologies.

According to Guma, Penrose is uniquely well-suited to solve these serious challenges with its advanced process control technology increases the productivity of a chemical plant or refinery by 10 to 15 percent. The increase in productivity means the plants use less fuel to produce the energy. The plant then releases fewer emissions while producing the same amount of energy.

The technology itself is an automation software — similar to autonomous software on a plane. The autonomous operation increases downstream productivity, which brings about the energy efficiency.

"Our autopilot software (like a human operator) can manage and foresee any unexpected disturbances in the plant," Guma explains. "The achievements that the Penrose technology has brought about seemed impossible to chemical and process engineers in the refinery space a few years ago."

Penrose recently signed its first project with one of the biggest downstream firms in the world. With a network of refineries and petrochemical plants around the world, this contract could lead to a global roll out of the Penrose technology.

A ground-breaking technology for O&G
The word "Penrose" is taken from a penrose triangle, an impossible geometrical object. Guma explained that the energy efficiency brought about from their software seemed impossible at first. Penrose has been able to reduce emissions inside plants and refineries by 15 to 20 percent while keeping production at the same level.

In 2007, a chief engineer working at a major oil and gas processing plant in Houston procured the technology for one of his plants. When the engineer saw how well the technology worked, he founded Penrose Technologies in 2017 with Tom Senyard, CTO at Penrose, who originally developed the technology.

After starting the company at the end of 2007, Penrose joined Station Houston. Guma said that by becoming a member, Penrose was able to plug into a large refining and petrochemical network.

"Penrose Technologies is completely self-financed. We worked with [Station Houston] as we finalized the software to find out what potential customers thought of the product. For us, Station Houston has been a great sounding board to potential investors in the company," Guma says.

Guma also explained that while there has been an uptick in innovation in the last few years, the refining and petrochemical business is traditional a slow mover in the uptake of innovation.

"I think more major oil and gas firms are becoming attune to startups and the innovation solutions they offer," Guma says.

He went on to explain that the biggest challenge Penrose faces is perception. Since the software allows plant operators and engineers at the plant to be hands off in the processes, there is a concern with reliability. For industry insiders, any viable product must be reliable even when process conditions at the plant change, which can happen often.

"The Penrose software is maximum hand off control from operators, and the reliability of our software gives us a huge edge in other competing products that can be unreliable," Guma says.

Future growth on a global market
Given the pressing need for more environmentally sustainable energy production, new technology will be adopted in the oil and gas energy. As Guma explains it, there will be no way to continue producing energy as it's been produced for decades because the negative effects of air pollution and emissions will be too severe — particularly in the areas where refineries operate.

"We see the global market for this type of technology as severely underserved," Guma says. "It's a big and sizable market, and I think we can reach a $2 to $3 billion valuation in the next five years."

With a core team of six employees in Houston, Penrose's software is now commercially available, and the company is in full growth mode at this point. The software can be distributed directly to customers, but they are working to develop distribution with major engineering companies as well.

Guma is grateful to be in an environment conducive to energy start-ups. He sees Houston as a major advantage given its proximity to the energy sector.

"No technology rises up in a vacuum. Any new technology needs a good ecosystem to come from," says Guma. "Houston was that ecosystem for Penrose."

Dyan Gibbens translated her Air Force experience with unmanned missiles into a drone services company. Courtesy of Alice

Houston drone company has big business on the horizon

The sky's the limit

Dyan Gibbens found her dream career. She studied engineering, learned to fly at the United States Air Force Academy, went into pilot training, and served as engineering acquisitions officer managing stealth nuclear cruise missiles. She even went on to support Air Force One and Global Hawk UAS engineering and logistics. She dedicated five years to active service before transitioning to the reserves.

"When I went to transition, I learned I was permanently disqualified from ever serving again," Gibbens said. "It was devastating to me, because all I've ever wanted to do was serve."

She went into a doctorate program — she already had her MBA — and was close to finishing up when her drone startup took flight. Trumbull Unmanned provides drone services to the energy sector for various purposes. With her experience as a pilot and managing unmanned missiles, she knew the demand for drones was only growing — and, being from Texas, she knew what industry to focus on.

"I wanted to start a company that uses unmanned systems or drones to improve safety and improve the environment and support energy,"

InnovationMap: What exactly does Trumbull Unmanned do?

Dyan Gibbens: We fly drones in challenging and austere environments to collect and analyze data for the energy sector. We fly across upstream, midstream, and downstream either on or off shore. We focus on three areas: digital transformation, inspection and operations, and technology development and integration.

The types data we collect and analyze could be LiDAR — light detection and ranging — to multispectral — to see the help of different properties — to visible — to perform tech-enabled inspections. We've recently hired inspectors in house as well. On LiDAR, we just hired a subject matter expert.

IM: So, the company is growing. What else is new for Trumbull?

DG: We just signed a few five-year agreements with supermajors. We're excited about that and the new hires. We're starting to do more on communications and situational awareness. We're doing more in energy and now in the government.

IM: What were some early challenges you faced?

DG: We are 100 percent organically funded — from our savings and from client contracts. Our first client was ExxonMobil. Our second client was Chevron. We had to prove ourselves over and over. We had to work hard to earn and then maintain that business. For us, it was also adjusting to a fluctuation in cash flow. It was going from a steady job to betting on yourself, and we didn't know anyone in Houston.

IM: What's the state of drone technology in the field?

DG: We've continued to see a hybrid approach toward services. Meaning, there's an in-house component and outsourced component. On the outsourced component, we intend to provide that for our clients. On the in-house component, while we don't train the masses, we do train our clients on request. We've promoted that model from the beginning. We think it makes sense that they are trained to do something simple, like take a picture, but for some of the more difficult projects, they outsource to us.

We're going to continue to see increased autonomy. There are really some amazing things already in autonomy, but there's still a lot of challenges flying in dense environments such as refineries and plants.

IM: How is Houston's startup scenes for veterans? What resources are out there?

DG: The way I see it is veterans have made a commitment to serve us, so we should make a commitment to serve them. That's my philosophy. Large companies have different programs, which is great, and there are entities such as Combined Arms, which has full services for transitioning veterans where you can go in and one-stop shop to get support from everything like getting connected to the VA to help working through PTSD to getting help transitioning to business. There are also really good Service Academy networks. More and more opportunities exist to step up to serve veterans.

------

Portions of this interview have been edited.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Autonomous truck company with Houston routes goes public

on a roll

Kodiak Robotics, a provider of AI-powered autonomous vehicle technology, has gone public through a SPAC merger and has rebranded as Kodiak AI. The company operates trucking routes to and from Houston, which has served as a launchpad for the business.

Privately held Kodiak, founded in 2018, merged with a special purpose acquisition company — publicly held Ares Acquisition Corp. II — to form Kodiak AI, whose stock now trades on the Nasdaq market.

In September, Mountain View, California-based Kodiak and New York City-based Ares disclosed a $145 million PIPE (private investment in public equity) investment from institutional investors to support the business combo. Since announcing the SPAC deal, more than $220 million has been raised for the new Kodiak.

“We believe these additional investments underscore our investors’ confidence in the value proposition of Kodiak’s safe and commercially deployed autonomous technology,” Don Burnette, founder and CEO of Kodiak, said in a news release.

“We look forward to leading the advancement of the commercial trucking and public sector industries,” he added, “and delivering on the exciting value creation opportunities ahead to the benefit of customers and shareholders.”

Last December, Kodiak debuted a facility near George Bush Intercontinental/Houston Airport for loading and loading driverless trucks. Transportation and logistics company Ryder operates the “truckport” for Ryder.

The facility serves freight routes to and from Houston, Dallas and Oklahoma City. Kodiak’s trucks currently operate with or without drivers. Kodiak’s inaugural route launched in 2024 between Houston and Dallas.

One of the companies using Kodiak’s technology is Austin-based Atlas Energy Solutions, which owns and operates four driverless trucks equipped with Kodiak’s driver-as-a-service technology. The trucks pick up fracking sand from Atlas’ Dune Express, a 42-mile conveyor system that carries sand from Atlas’ mine to sites near customers’ oil wells in the Permian Basin.

Altogether, Atlas has ordered 100 trucks that will run on Kodiak’s autonomous technology in an effort to automate Atlas’ supply chain.

Rice University scientists invent new algorithm to fight Alzheimer's

A Seismic Breakthrough

A new breakthrough from researchers at Rice University could unlock the genetic components that determine several human diseases such as Parkinson's and Alzheimer's.

Alzheimer's disease affected 57 million people worldwide in 2021, and cases in the United States are expected to double in the next couple of decades. Despite its prevalence and widespread attention of the condition, the full mechanisms are still poorly understood. One hurdle has been identifying which brain cells are linked to the disease.

For years, it was thought that the cells most linked with Alzheimer's pathology via DNA evidence were microglia, infection-fighting cells in the brain. However, this did not match with actual studies of Alzheimer's patients' brains. It's the memory-making cells in the human brain that are implicated in the pathology.

To prove this link, researchers at Rice, alongside Boston University, developed a computational algorithm called “Single-cell Expression Integration System for Mapping Genetically Implicated Cell Types," or SEISMIC. It allows researchers to zero in on specific neurons linked to Alzheimer's, the first of its kind. Qiliang Lai, a Rice doctoral student and the lead author of a paper on the discovery published in Nature Communications, believes that this is an important step in the fight against Alzheimer's.

“As we age, some brain cells naturally slow down, but in dementia — a memory-loss disease — specific brain cells actually die and can’t be replaced,” said Lai. “The fact that it is memory-making brain cells dying and not infection-fighting brain cells raises this confusing puzzle where DNA evidence and brain evidence don’t match up.”

Studying Alzheimer's has been hampered by the limitations of computational analysis. Genome-wide association studies (GWAS) and single-cell RNA sequencing (scRNA-seq) map small differences in the DNA of Alzheimer's patients. The genetic signal in these studies would often over-emphasize the presence of infection fighting cells, essentially making the activity of those cells too "loud" statistically to identify other factors. Combined with greater specificity in brain regional activity, SEISMIC reduces the data chatter to grant a clearer picture of the genetic component of Alzheimer's.

“We built our SEISMIC algorithm to analyze genetic information and match it precisely to specific types of brain cells,” Lai said. “This enables us to create a more detailed picture of which cell types are affected by which genetic programs.”

Though the algorithm is not in and of itself likely to lead to a cure or treatment for Alzheimer's any time soon, the researchers say that SEISMIC is already performing significantly better than existing tools at identifying important disease-relevant cellular signals more clearly.

“We think this work could help reconcile some contradicting patterns in the data pertaining to Alzheimer’s research,” said Vicky Yao, assistant professor of computer science and a member of the Ken Kennedy Institute at Rice. “Beyond that, the method will likely be broadly valuable to help us better understand which cell types are relevant in different complex diseases.”

---

This article originally appeared on CultureMap.com.

5 incubators and accelerators fueling the growth of Houston startups

meet the finalists

Houston is home to numerous accelerators and incubators that support founders in pushing their innovative startups and technologies forward.

As part of our 2025 Houston Innovation Awards, the new Incubator/Accelerator of the Year category honors a local incubator or accelerator that is championing and fueling the growth of Houston startups.

Five incubators and accelerators have been named finalists for the 2025 award. They support startups ranging from hard-tech companies to digital health startups.

Read more about these organizations below. Then join us at the Houston Innovation Awards on Nov. 13 at Greentown Labs, when the winner will be unveiled.

Get your tickets now on sale for this exclusive event celebrating Houston Innovation.

Activate

Hard tech incubator Activate supports scientists in "the outset of their entrepreneurial journey." The Houston hub was introduced last year, and joins others in Boston, New York, and Berkley, California—where Activate is headquartered. It named its second Houston cohort this summer.

This year, the incubator grew to include its largest number of concurrent supported fellows, with 88 companies currently being supported nationally. In total, Activate has supported 296 fellows who have created 236 companies. Those companies have raised over $4 billion in follow-on funding, according to Activate. In Houston, it has supported several Innovation Awards finalists, including Solidec, Bairitone Health and Deep Anchor Solutions. It is led locally by Houston Managing Director Jeremy Pitts.

EnergyTech Nexus

Cleantech startup hub EnergyTech Nexus' mission is to accelerate the energy transition by connecting founders, investors and industrial stakeholders and helping to develop transformative companies, known as "thunderlizards."

The hub was founded in 2023 by CEO Jason Ethier, Juliana Garaizar and Nada Ahmed. It has supported startups including Capwell Services, Resollant, Syzygy Plasmonics, Hertha Metals, EarthEn Energy and Solidec—many of which are current or past Innovation Awards finalists. This year Energy Tech Nexus launched its COPILOT Accelerator, powered by Wells Fargo Innovation Incubator (IN²) at the National Renewable Energy Laboratory (NREL). COPILOT partners with Browning the Green Space, a nonprofit that promotes diversity, equity and inclusion (DEI) in the clean energy and climatech sectors. Energy Tech Nexus also launched its Liftoff fundraising program, its Investor Program, and a "strategic ecosystem partnership" with Greentown Labs.

Greentown Labs

Climatetech incubator Greentown Labs offers its community resources and a network to climate and energy innovation startups looking to grow. The collaborative community offers members state-of-the-art prototyping labs, business resources and access to investors and corporate partners. The co-located incubator was first launched in Boston in 2011 before opening in Houston in 2021.

Greentown has seen major changes and activity this year. In February, Greentown announced Georgina Campbell Flatter as its new CEO, along with a new Board of Directors. In July, it announced Lawson Gow as its Head of Houston, a "dedicated role to champion the success of Greentown Houston’s startups and lead Greentown’s next chapter of impact in the region," according to Greentown. It has since announced numerous new partnerships, including those with Energy Tech Nexus, Los Angeles-based software development firm Nominal, to launch the new Industrial Center of Excellence; and Houston-based Shoreless, to launch an AI lab onsite. Greentown Houston has supported 175 startups since its launch in 2021, with 45 joining in the last two years. Those startups include the likes of Hertha Metals, RepAir Carbon, Solidec, Eclipse Energy (formerly GoldH2) and many others.

Healthtech Accelerator (TMCi)

The Healthtech Accelerator, formerly TMCx, focuses on clinical partnerships to improve healthcare delivery and outcomes. Emerging digital health and medical device startups that join the accelerator are connected with a network of TMC hospitals and seasoned advisors that will prepare them for clinical validation, funding and deployment.

The Healthtech Accelerator is part of Texas Medical Center Innovation, which also offers the TMCi Accelerator for Cancer Therapeutics. The Healthtech Accelerator named its 19th, and latest, cohort of 11 companies last month.

Impact Hub Houston

Impact Hub Houston supports early-stage ventures at various stages of development through innovative programs that address pressing societal issues. The nonprofit organization supports social impact startups through mentorship, connections and training opportunities.

There are more than 110 Impact Hubs globally with 24,000-plus members spanning 69 countries, making it one of the world’s largest communities for accelerating entrepreneurial solutions toward the United Nations' Sustainable Development Goals (SDGs).

---

The Houston Innovation Awards program is sponsored by Houston City College Northwest, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.