The Rice team's process is up to 10 times more effective than existing lithium-ion battery recycling. Photo by Gustavo Raskosky/Rice University

With the rise of electric vehicles, every ounce of lithium in lithium-ion batteries is precious. A team of scientists from Rice University has figured out a way to retrieve as much as 50 percent of the material in used battery cathodes in as little as 30 seconds.

Researchers at Rice University’s Nanomaterials Laboratory led by Department of Materials Science and NanoEngineering Chair Pulickel Ajayan released the findings a new study published in Advanced Functional Materials. Their work shows that the process overcomes a “bottleneck” in lithium-ion battery recycling technology. The researchers described a “rapid, efficient and environmentally friendly method for selective lithium recovery using microwave radiation and a readily biodegradable solvent,” according to a news release.

Past recycling methods have involved harsh acids, and alternative eco-friendly solvents like deep eutectic solvents (DESs) at times have not been as efficient and economically viable. Current recycling methods recover less than 5 percent of lithium, which is due to contamination and loss during the process.

In order to leach other metals like cobalt or nickel, both the choline chloride and the ethylene glycol have to be involved in the process, according to the researchers at Rice. The researchers submerged the battery waste material in the solvent and blasted it with microwave radiation since they knew that of the two substances only choline chloride is good at absorbing microwaves.

Microwave-assisted heating can achieve similar efficiencies like traditional oil bath heating almost 100 times faster. Using the microwave-based process, Rice found that it took 15 minutes to leach 87 percent of the lithium, which differs from the 12 hours needed to obtain the same recovery rate via oil bath heating.

“This method not only enhances the recovery rate but also minimizes environmental impact, which makes it a promising step toward deploying DES-based recycling systems at scale for selective metal recovery,” Ajayan says in the release.

Due to rise in EV production, the lithium-ion battery global market is expected to grow by over 23 percent in the next eight years, and was previously valued at over $65 billion in 2023.

“We’ve seen a colossal growth in LIB use in recent years, which inevitably raises concerns as to the availability of critical metals like lithium, cobalt and nickel that are used in the cathodes,” the study's co-author, Sohini Bhattacharyya, adds. “It’s therefore really important to recycle spent LIBs to recover these metals.”

------

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice leads Texas colleges on LinkedIn's first-ever career success ranking

honor roll

Houston’s Rice University leads the Texas schools in LinkedIn’s first-ever ranking of the 50 best U.S. colleges for long-term career success.

Rice appears at No. 31 in the ranking. Southern Methodist University, located in the Dallas suburb of University Park, lands at No. 37 and the University of Texas at Austin shows up at No. 46.

LinkedIn, a career networking site, says the ranking is based on exclusive data about alumni, such as job placement rates, advancement into senior-level jobs, post-graduate formation of startups, and pre-graduation internships.

“A four-year bachelor’s degree is a significant investment of time and money, especially as tuition costs rise and the job market shifts,” the LinkedIn report says. “For millions of Americans, the return on investment is worth it. Those who earn the degree can see an enduring impact on their earning potential and overall career trajectory.”

Where someone earns a degree can have an even bigger impact, according to LinkedIn, as graduates of top programs often land jobs more rapidly, build strong professional networks, and rise to leadership roles more quickly.

“Long-term success isn’t just about landing a great first job; it’s about sustained career growth and opportunity years after graduation,” Andrew Seaman, senior editor-at-large for jobs and career development at LinkedIn News, told Fortune. “For this list, that means looking at how well a school sets alumni up for the long haul.”

Here’s a breakdown of some of the data about the three Texas schools on the LinkedIn list:

Rice University

  • Top industries of graduates: Technology, business consulting, higher education
  • Top post-graduation destinations: Houston, San Francisco Bay Area, New York City
  • Notable skills: MATLAB programming language, engineering design, data science

Southern Methodist University

  • Top industries of graduates: Financial services, business consulting
  • Top post-graduation destinations: Dallas, New York City, Los Angeles
  • Most notable skills: AMPL programming language, Avid iNews content creation system, data science

University of Texas at Austin

  • Top industries of graduates: Technology, medical practices, advertising
  • Top post-graduation destinations: Austin, Dallas, Houston
  • Most notable skills: SOLIDWORKS computer-aided design software, architecture, Avid Media Composer video editing software

TMC lands $3M grant to launch cancer device accelerator

cancer funding

A new business accelerator at Houston’s Texas Medical Center has received a nearly $3 million grant from the Cancer Prevention and Research Institute of Texas.

The CPRIT grant, awarded to the Texas Medical Center Foundation, will help launch the Accelerator for Cancer Medical Devices. The accelerator will support emerging innovators in developing prototypes for cancer-related medical devices and advancing them from prototype to clinical trials.

“The translation of new cancer-focused precision medical devices, often the width of a human hair, creates the opportunity to develop novel treatments for cancer patients,” the accelerator posted on the CPRIT website.

Scientist, consultant, and entrepreneur Jason Sakamoto, associate director of the TMC Center for Device Innovation, will oversee the accelerator. TMC officials say the accelerator builds on the success of TMC Innovation’s Accelerator for Cancer Therapeutics.

Each participant in the Accelerator for Cancer Medical Devices program will graduate with a device prototype, a business plan, and a “solid foundation” in preclinical and clinical strategies, TMC says. Participants will benefit from “robust support” provided by the TMC ecosystem, according to the medical center, and “will foster innovation into impactful and life-changing cancer patient solutions in Texas and beyond.”

In all, CPRIT recently awarded $27 million in grants for cancer research. That includes $18 million to attract top cancer researchers to Texas. Houston institutions received $4 million for recruitment:

  • $2 million to the University of Texas MD Anderson Cancer Center to recruit Rodrigo Romero from Memorial Sloan Kettering Cancer Center in New York City
  • $2 million to MD Anderson to recruit Eric Gardner from Weill Cornell Medicine in New York City

A $1 million grant also went to Baylor College of Medicine researcher Dr. Akiva Diamond. He is an assistant professor at the medical college and is affiliated with Baylor’s Dan L. Duncan Comprehensive Cancer Center.