A Houston-based biotech company has completed early testing for its groundbreaking insulin alternative and is headed toward clinical trials. Photo via Getty Images

A Houston biotech startup is one step closer to releasing its marquee drug for the global insulin market, which is projected to break the $90 billion threshold by 2029.

rBIO says it recently completed testing of the properties of R-biolin, an insulin drug that’s biologically identical to Novo Nordisk’s Novolin drug. The patent for Novolin about two decades ago. In March 2023, the Dutch drugmaker announced it was slashing the list price of Novolin by 65 percent to $48.20 per vial and $91.09 per FlexPen.

Executives at rBIO are now pursuing a partnership with a contract research organization to manage clinical trials of R-biolin. If those trials go well, R-biolin will seek approval to supply its insulin therapy to diabetes patients around the world.

Washington University in St. Louis is rBIO’s academic partner for the R-biolin project.

The rBIO platform produces insulin at greater yields that traditional manufacturing techniques do. The company is striving to drive down the cost of insulin by 30 percent.

About 38 million Americans have diabetes, with the vast majority being treated for type 2 diabetes, according to the U.S. Centers for Disease Control and Prevention (CDC). Many people with diabetes must take insulin to control their blood sugar levels.

Research company iHealthcareAnalyst predicts the global market for insulin will surpass the $90 billion mark in 2029.

“There has been a lot of talk in the media about reducing the cost of insulin for diabetic patients, but what is often overlooked is that the domestic demand for insulin will soon outpace the supply, leading to a new host of issues,” Cameron Owen, co-founder and CEO of rBIO, says in a news release.

“We’re dedicated to addressing the growing demand for accessible insulin therapies, and … we’re thrilled to announce the viability of our highly scalable manufacturing process.”

Professionals from the University of California San Diego and Johns Hopkins University established rBIO in 2020. The startup moved its headquarters from San Diego to Houston in 2022.

CEO Cameron Owen and Chief Scientific Officer Deenadayalan Bakthavatsalam work on insulin purification in the Houston lab. Photo courtesy

This week's roundup of Houston innovators includes Gaurab Chakrabarti of Solugen, Sandy Guitar of HX Venture Fund, and Cameron Owen of rBIO. Photos courtesy

3 Houston innovators to know this week

who's who

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — from synthetic biology to venture capital — recently making headlines in Houston innovation.

Gaurab Chakrabarti, the CEO and co-founder of Solugen

Gaurab Chakrabarti shared his entrepreneurial journey on the SXSW stage this year. Photo courtesy of the Greater Houston Partnership

Houston doesn't have too many unicorns — startups valued at $1 billion or more — in its innovation ecosystem, but Solugen, a sustainable chemicals company, is among the elite group. Gaurab Chakrabarti, the CEO and co-founder of the company, joined Houston House by the Greater Houston Partnership, to share his story on the SXSW stage.

“You do make your own luck, but you have to be putting in the work to do it," Chakrabarti says, adding that it's not an easy thing to accomplish. “There are things you can be doing to increase your luck surface area."

He shared several lessons he learned on his founder journey in the discussion. Read more.

Sandy Guitar, managing director of HX Venture Fund

Sandy Guitar shares some lessons learned from the fallout of Silicon Valley Bank. Photo via HXVF

Following the failure of Silicon Valley Bank, there's one thing Sandy Guitar can say has changed for Houston innovators: Bank diversification is going to be a must.

“We didn't think we needed one last week, but this week we know we need a resilience plan," she says, explaining that bank diversification is going to be added to "the operational due diligence playbook." Read more.

Cameron Owen, co-founder and CEO of rBIO

San Diego-based rBIO moved to Houston to take advantage of the growing ecosystem of biomanufacturing and synthetic biology. Photo courtesy of rBIO

Founded in San Diego, rBIO recently relocated to Houston and has big plans for settling in the city, says Cameron Owen, the company's co-founder and CEO.

“Companies from California like us and the coastal areas were converging here in Houston and creating this new type of bioeconomy,” he tells InnovationMap.

He shares that Houston wasn't originally on his radar, until it was. A visit turned into a relocation, and it's just the beginning for the biotech startup that's focused on using synthetic biology for pharmaceuticals. Read more.

San Diego-based rBIO moved to Houston to take advantage of the growing ecosystem of biomanufacturing and synthetic biology. Photo via Getty Images

California-founded biotech startup relocates to join Houston's emerging bioeconomy

new to hou

Cameron Owen had an idea for a synthetic biology application, and he pitched it to a handful of postdoctoral programs. When he received the feedback that he didn't have enough research experience, he decided to launch a startup based in San Diego around his idea. He figured that he'd either get the experience he needed to re-apply, or he'd create a viable company.

After three years of research and development, Owen's path seems to have taken him down the latter of those two options, and he moved his viable company, rBIO, to Houston — a twist he didn't see coming.

“Houston was not on my radar until about a year and a half ago,” Owen says, explaining that he thought of Houston as a leading health care hub, but the coasts still had an edge when it came to what he was doing. “San Diego and the Boston area are the two big biotech and life science hubs.”

But when he visited the Bayou City in December of 2021, he says he saw first hand that something new was happening.

“Companies from California like us and the coastal areas were converging here in Houston and creating this new type of bioeconomy,” he tells InnovationMap.

Owen moved to Houston last year, but rBIO still has an academic partner in Washington University in St. Louis and a clinical research organization it's working with too, so he admits rBIO's local footprint is relatively small — but not for long.

"When we look to want to get into manufacturing, we definitely want to build something here in Houston," he says. "We’re just not to that point as a company."

In terms of the stage rBIO is in now, Owen says the company is coming out of R&D and into clinical studies. He says rBIO has plans to fundraise and is meeting with potential partners that will help his company scale and build out a facility.

With the help of its CRO partner, rBIO has two ongoing clinical projects — with a third coming next month. Owen says right now rBIO is targeting the pharmaceutical industry’s biologics sector — these are drugs our bodies make naturally, like insulin. About 12 percent of the population in the United States has diabetes, which translates to almost 40 million people. The demand for insulin is high, and rBIO has a way to create it — and at 30 percent less cost.

This is just the tip of the iceberg — the world of synthetic biology application is endless.

“Now that we can design and manipulate biology in ways we’ve never been able to before,” Owen says, "we’re really only limited by our own imagination.”

Synthetic biology is a field of science that involves programing biology to create and redesign natural elements. While it sounds like science fiction, Owen compares it to any other type of technology.

“Biology really is a type of software,” he says. “Phones and computers at their core run on 1s and 0s. In biology, it’s kind of the same thing, but instead of two letters, it’s four — A, C, T, and G.”

“The cool thing about biology is the software builds the hardware,” he continues. “You put that code in there and the biology builds in and of itself.”

Owen says the industry of synthetic biology has been rising in popularity for years, but the technology has only recently caught up.

“We’re exploring a brave new world — there’s no doubt about that,” Owen says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH receives $2.6M gift to support opioid addiction research and treatment

drug research

The estate of Dr. William A. Gibson has granted the University of Houston a $2.6 million gift to support and expand its opioid addiction research, including the development of a fentanyl vaccine that could block the drug's ability to enter the brain.

The gift builds upon a previous donation from the Gibson estate that honored the scientist’s late son Michael, who died from drug addiction in 2019. The original donation established the Michael C. Gibson Addiction Research Program in UH's department of psychology. The latest donation will establish the Michael Conner Gibson Endowed Professorship in Psychology and the Michael Conner Gibson Research Endowment in the College of Liberal Arts and Social Sciences.

“This incredibly generous gift will accelerate UH’s addiction research program and advance new approaches to treatment,” Daniel O’Connor, dean of the College of Liberal Arts and Social Sciences, said in a news release.

The Michael C. Gibson Addiction Research Program is led by UH professor of psychology Therese Kosten and Colin Haile, a founding member of the UH Drug Discovery Institute. Currently, the program produces high-profile drug research, including the fentanyl vaccine.

According to UH, the vaccine can eliminate the drug’s “high” and could have major implications for the nation’s opioid epidemic, as research reveals Opioid Use Disorder (OUD) is treatable.

The endowed professorship is combined with a one-to-one match from the Aspire Fund Challenge, a $50 million grant program established in 2019 by an anonymous donor. UH says the program has helped the university increase its number of endowed chairs and professorships, including this new position in the department of psychology.

“Our future discoveries will forever honor the memory of Michael Conner Gibson and the Gibson family,” O’Connor added in the release. “And I expect that the work supported by these endowments will eventually save many thousands of lives.”

CenterPoint and partners launch AI initiative to stabilize the power grid

AI infrastructure

Houston-based utility company CenterPoint Energy is one of the founding partners of a new AI infrastructure initiative called Chain Reaction.

Software companies NVIDIA and Palantir have joined CenterPoint in forming Chain Reaction, which is aimed at speeding up AI buildouts for energy producers and distributors, data centers and infrastructure builders. Among the initiative’s goals are to stabilize and expand the power grid to meet growing demand from data centers, and to design and develop large data centers that can support AI activity.

“The energy infrastructure buildout is the industrial challenge of our generation,” Tristan Gruska, Palantir’s head of energy and infrastructure, says in a news release. “But the software that the sector relies on was not built for this moment. We have spent years quietly deploying systems that keep power plants running and grids reliable. Chain Reaction is the result of building from the ground up for the demands of AI.”

CenterPoint serves about 7 million customers in Texas, Indiana, Minnesota and Ohio. After Hurricane Beryl struck Houston in July 2024, CenterPoint committed to building a resilient power grid for the region and chose Palantir as its “software backbone.”

“Never before have technology and energy been so intertwined in determining the future course of American innovation, commercial growth, and economic security,” Jason Wells, chairman, president and CEO of CenterPoint, added in the release.

In November, the utility company got the go-ahead from the Public Utility Commission of Texas for a $2.9 billion upgrade of its Houston-area power grid. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

A month earlier, CenterPoint launched a $65 billion, 10-year capital improvement plan to support rising demand for power across all of its service territories.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.