In a post-COVID-19 world, it's time for drones and automation to shine. Photo courtesy of Airobotics

For years, Ran Krauss has watched the drone and automation industry be overhyped and misunderstood. But due to a myriad of causes — a global pandemic that's forced workers to stay home, a oil glut that's caused energy company layoffs, and years of work pushing through new regulation — it's finally time, Kauss believes, for drone technology to take-off.

Krauss has worked in the drone industry for years and, in 2014, co-founded Airobotics, a full-service drone company, with Meir Kliner. Between COVID-19 and an oversupply of oil, energy companies, which make up most of Airobotics clients, are seeing how important automation and drone technology is.

"Everyone watched Netflix before, but the pandemic increased demand," Krauss tells InnovationMap. "For us, our ability to provide remote monitoring applications was always something of value, but obviously in times like this when staff can't get into a site, there's more significance."

The COVID-19 crisis, Krauss explains, has perhaps sped up energy companies' plans to integrate this type of technology.

"One of the effects of the pandemic is reconsidering the timeline and deployment of robotics as a whole to deal with future threats like this," he says. "The world is going to think differently about automation, robotics, and drones."

Krauss saw an opportunity for drone technology within industrial business, but wanted to take it a step further with automation. That's how he came up with the idea for a drone in a box — an idea that became Airobotics. The company's technology operates as a one-stop shop for companies looking for drone and automation technology.

Airobotics's technology includes a docking station that even has a robotic arm to replace batteries in the drone. Photo courtesy of Airobotics

The Airobotics device comes complete with a docking station that even has an automated arm to replace batteries, for instance, so limited human interaction is needed. Airobotics works with its clients to customize data collection needs, and then manages the operations as a service provider.

"As an operator, we figured out that we needed to create an automated system — similar to an autonomous car — for safety, productivity, and cost effectiveness. That's why we started a robotics company," he says.

While Airobotics — which has clients worldwide — has offices in the United States, Israel, and Singapore, Texas is a focus for the company, Krauss says.

The company's technology has seen historic approval from regulators in each of the countries it operates in. Specifically, Krauss praises what the Federal Aviation Administration is doing to advance drone technology regulation, and the department recognizes Airobotics as subject matter experts.

"We're working very closely with the FAA, which has identified us as a partner to help them create the right environment for drones to be integrated into the airspace," Krauss says. "You can't ignore new technologies but just saying, 'OK, this thing [isn't allowed to] fly.' There has to be the right balance of public safety and encouraging new technologies to take place."

It's not only industry and regulatory support Airobotic has seen. The company has gone through quite a few funding rounds and raised over $110 million.

"Our investors have identified the situation and the market potential our company has over anybody else," Krauss says. "We're the trailblazers, which comes at a cost — it's much easier to follow than to lead. But, we're happy to do so."

Perhaps, one of the biggest challenges for the company and the industry is educating potential clients. The word "drone" is used to describe everything from a remote-controlled device with a camera on it that's just a few hundred dollars online to Airobotics's Optimus device, which is made up of thousands of parts.

"There is definitely a constant need for market education in this sector — always has been the case," Krauss says.

For Krauss, he's seen drone technology go through this "hype phase," and he sees a bright future for what drone and automation capabilities are coming.

"I think we're going to see a resurgence in this industry in the coming years — with applications in the real world with real value generation, not just hype and science fiction," he says.

One industry that's ripe for drone technology disruption — smart cities innovation. Krauss says he hopes Houston is a city that looks to utilize the tech.

"I think the digitization of the urban environment is going to be the next sector where we're going see drones create a lot of value," he says.

Airobotics has clients within the industrial sector. Photo courtesy of Airobotics

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown Labs names Lawson Gow as its new Houston leader

head of hou

Greentown Labs has named Lawson Gow as its Head of Houston.

Gow is the founder of The Cannon, a coworking space with seven locations in the Houston area, with additional partner spaces. He also recently served as managing partner at Houston-based investment and advisory firm Helium Capital. Gow is the son of David Gow, founder of Energy Capital's parent company, Gow Media.

According to Greentown, Gow will "enhance the founder experience, cultivate strategic partnerships, and accelerate climatetech solutions" in his new role.

“I couldn’t be more excited to join Greentown at this critical moment for the energy transition,” Gow said in a news release. “Greentown has a fantastic track record of supporting entrepreneurs in Houston, Boston, and beyond, and I am eager to keep advancing our mission in the energy transition capital of the world.”

Gow has also held analyst, strategy and advising roles since graduating from Rice University.

“We are thrilled to welcome Lawson to our leadership team,” Georgina Campbell Flatter, CEO of Greentown Labs, added in the release. “Lawson has spent his career building community and championing entrepreneurs, and we look forward to him deepening Greentown’s support of climate and energy startups as our Head of Houston.”

Gow is the latest addition to a series of new hires at Greentown Labs following a leadership shakeup.

Flatter was named as the organization's new CEO in February, replacing Kevin Dutt, Greentown’s interim CEO, who replaced Kevin Knobloch after he announced that he would step down in July 2024 after less than a year in the role.

Greentown also named Naheed Malik its new CFO in January.

Timmeko Moore Love was named the first Houston general manager and senior vice president of Greentown Labs. According to LinkedIn, she left the role in January.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Rice team keeps CO2-to-fuel devices running 50 times longer in new study

Bubbling Up

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also recently shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston foundation grants $27M to support Texas chemistry research

fresh funding

Houston-based The Welch Foundation has doled out $27 million in its latest round of grants for chemical research, equipment and postdoctoral fellowships.

According to a June announcement, $25.5 million was allocated for the foundation's longstanding research grants, which provide $100,000 per year in funding for three years to full-time, regular tenure or tenure-track faculty members in Texas. The foundation made 85 grants to faculty at 16 Texas institutions for 2025, including:

  • Michael I. Jacobs, assistant professor in the chemistry and biochemistry department at Texas State University, who is investigating the structure and thermodynamics of intrinsically disordered proteins, which could "reveal clues about how life began," according to the foundation.
  • Kendra K. Frederick, assistant professor in the biophysics department at The University of Texas Southwestern Medical Center, who is studying a protein linked to Parkinson’s disease.
  • Jennifer S. Brodbelt, professor in chemistry at The University of Texas at Austin, who is testing a theory called full replica symmetry breaking (fullRSB) on glass-like materials, which has implications for complex systems in physics, chemistry and biology.

Additional funding will be allocated to the Welch Postdoctoral Fellows of the Life Sciences Research Foundation. The program provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas. Two fellows from Rice University and Baylor University will receive $100,000 annually for three years.

The Welch Foundation also issued $975,000 through its equipment grant program to 13 institutions to help them develop "richer laboratory experience(s)." The universities matched funds of $352,346.

Since 1954, the Welch Foundation has contributed over $1.1 billion for Texas-nurtured advancements in chemistry through research grants, endowed chairs and other chemistry-related ventures. Last year, the foundation granted more than $40.5 million in academic research grants, equipment grants and fellowships.

“Through funding basic chemical research, we are actively investing in the future of humankind,” Adam Kuspa, president of The Welch Foundation, said the news release. “We are proud to support so many talented researchers across Texas and continue to be inspired by the important work they complete every day.”