A UH-affiliated project won $3.6M to develop microreactor technology that turns carbon dioxide into methanol using renewable energy. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Mark Cuban calls AI ‘the greater democratizer’ for young entrepreneurs

eyes on AI

Texas billionaire Mark Cuban—whose investment portfolio includes Houston-based Holliball, a startup that makes and sells large inflatable holiday ornaments—believes AI is leveling the playing field for budding low-income entrepreneurs.

At the recent Clover x Shark Tank Summit in Las Vegas, the Shark Tank alum called AI “the greater democratizer.”

Cuban told Axios that free and low-cost AI tools enable disadvantaged teenagers to compete with seasoned professionals.

“Right now, if you’re a 14- to 18-year-old and you’re in not-so-good circumstances, you have access to the best professors and the best consultants,” Cuban said. “It allows people who otherwise would not have access to any resources to have access to the best resources in real time. You can compete with anybody.”

While Cuban believes AI is “the great democratizer” for low-income young people, low-income workers still face hurdles in navigating the AI landscape, according to Public Works Partners, an urban planning and consulting firm. The firm says access to AI among low-income workers may be limited due to cost, insufficient digital literacy and infrastructure gaps.

“Without adequate resources and training, these workers may struggle to adapt to AI-driven workplaces or access the educational opportunities necessary to acquire new skills,” Public Works Partners said.

Texas 2036, a public policy organization focused on the state’s future, reported in January AI jobs in Texas are projected to grow 27 percent over the next decade. The number 2036 refers to the year when Texas will celebrate its bicentennial.

As for the current state of AI, Cuban said he doesn’t think the economy is witnessing an AI bubble comparable to the dot-com bubble, which lasted from 1998 to 2000.

“The difference is, the improvement in technology basically slowed to a trickle,” Cuban said of the dot-com era. “We’re nowhere near the improvement in technology slowing to a trickle in AI.”

CPRIT hires MD Anderson official as chief cancer prevention officer

new hire

The Austin-based Cancer Prevention and Research Institute of Texas, which provides funding for cancer research across the state, has hired Ruth Rechis as its chief prevention officer. She comes to CPRIT from Houston’s University of Texas MD Anderson Cancer Center, where she led the Cancer Prevention and Control Platform.

Before joining MD Anderson, Rechis was a member of the executive leadership team at the Livestrong Foundation, an Austin-based nonprofit that supports people affected by cancer.

“Ruth has widespread connections throughout the cancer prevention community, both in Texas and across the nation,” CPRIT CEO Kristen Doyle said in a news release. “She is a long-term passionate supporter of CPRIT, and she is very familiar with our process, programs, and commitment to transparency. Ruth is a terrific addition to the team here at CPRIT.”

Rechis said that by collaborating with researchers, policymakers, public health leaders and community partners, CPRIT “can continue to drive forward proven prevention strategies that improve health outcomes, lower long-term costs, and create healthier futures for all.”

At MD Anderson, Rechis and her team worked with more than 100 organizations in Texas to bolster cancer prevention initiatives at clinics and community-based organizations.

Rechis is a longtime survivor of Hodgkin lymphoma, a type of cancer that affects the lymph nodes, which are part of a person’s immune system.