The Welch Foundation has announced a $100 million gift to Rice University to establish The Welch Institute focused on materials science. Photo courtesy of Rice

A private foundation that funds chemical research within the state of Texas is dedicating funds to a new venture — an institute focused on advanced materials at Rice University.

The Welch Foundation announced today a $100 million gift to Rice University to establish The Welch Institute. The institute will foster the study of matter, the design and discovery of new materials, and nanotechnology, and it will be led by an independent board of directors and scientific advisory board.

"The Welch Institute will focus on the development of advanced materials for the good of society and to advance the vision of Robert A. Welch, who believed in basic chemical research as a powerful force for transformative breakthroughs and improving the quality of life," says Welch Foundation Chair and Director Carin Barth in a news release. "It will bring together top minds across all disciplines to catalyze innovation and center leadership in the field right here in the Houston area."

Material science has an impact across industries — from energy, water, space, telecommunications, manufacturing, transportation, and more.

"Innovation is the foundation of progress. More than ever, the discovery of new knowledge is in turn the precursor of innovation. That is why universities and the work we do are key components of the innovation ecosystem," said Rice University President David Leebron at the press conference. "We expect the Welch Institute to serve the needs of all mankind, but we also expect it will secure a stronger future for the people of Houston."

The institute has a huge opportunity to lead the way in material science in the United States — as most of the current research and innovation within this field is happening on foreign land.

"While [material science] is fundamental to every conceivable aspect of our lives, the United States may be falling behind in terms of advancement in this field," says Gina Luna, board member of The Welch Foundation and acting president of The Welch Institute, at the press conference. "Of the top 10 material science institutes in the world today, not one of them is in the U.S. We believe the Welch Institute can change that."

Luna adds that the organization will bring together experts together in Houston, "where we just know how to get things done," she adds.

Rice is an ideal home for the initiative, says Pulickel M. Ajayan, chair of Rice's department of materials science and nanoengineering, and Houston stands to benefit from the program as well.

"This new institute will serve as an international hub for materials research, so that people from all around the world can come here and spend time and see Houston and Rice as a destination for materials research," he adds.The Welch Foundation has granted over $1 billion in funds and has endowed 48 chairs at 21 Texas universities, says Peter Dervan, chairman of the Scientific Advisory Board of The Welch Foundation and Bren Professor of Chemistry at the California Institute of Technology.

"We want to develop the Institute while maintaining all of our legacy grant programs and awards, which have served Texas scientists so well over the years," he adds,

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.