The journey from ideation to creation, and then manufacturing can be difficult, but rewarding. Photo courtesy of OKGlobal

We live in a digital world. Music, movies, and even family photos have become primarily digital. Computer software offers us a range of comfort and efficiency and has become part of our daily routine. So, why would anyone want to build a career around physical product development?

Simple, almost every software product or next big thing relies on a well-executed physical product development project. Apps need a place to run, games need a console to be played, and pictures need a camera to be taken.

Physical product development means dreaming of something that does not yet exist and solves an existing problem. It means taking an intangible idea and making it into a physical item that people can see, touch, and use.

The journey from ideation to creation, and then manufacturing can be difficult, but rewarding. By understanding the process, you'll find that not only is your inspiration worth pursuing, but it may be one of the most fulfilling things you will ever do.

From inspiration to perspiration

Every product development project begins with a vision, the identification of a problem and a solution for that problem. That initial spark of inspiration is what drives the entire project.

Look for a problem that hasn't been solved and solve that problem, or try the reverse. Think of a product idea, and then work backwards to find the need. Regardless, one cannot be successful without the other.

Projects require this problem, or need, because it embodies the product's target market. A product idea without a well-defined need has no reason to exist, and if it did, it would be downright perplexing.

Once you identify your need and idea, start your research.

Test the validity of your idea. How much of a market exists for your problem-solving miracle? Send out surveys, look at various markets, conduct data analyses, and generally, do everything in your power to ensure that your product should be made.

Then, start making something.

From concept to reality

The design, prototype and manufacturing stages are what bring your inspiration closer to reality. Turning it into a concrete product means letting go, and that can be scary.

Initial concept designs can be done in a variety of different ways. Detailed sketches and blueprints could be drawn up, or CAD drawings can be created. This concept design can help you explain your idea to others, including partners and investors. What works even better, though, are prototypes.

A prototype is a preliminary model of your product that can help you determine the feasibility of different aspects of your design. You can make a functional prototype, which acts as a proof-of-concept for your idea, or you may create aesthetic prototypes that will test the look and feel of your product.

Once you nail down the ideal appearance and physicality of your product, you will need to combine the two disciplines as seamlessly as possible. This performance prototype will effectively demo your final product.

Finally, you can prepare your product for production. Designing for manufacturability (DFM) means ensuring that your product can be made efficiently and cost-effectively. DFM allows you to mistake-proof your product by choosing the best manufacturing materials and methods, while keeping in mind the appropriate regulations for your desired market.

From nothing into something

The product development process often changes. Trends like crowdsourcing and innovative fast-to-market solutions constantly upend the process and make it new again. Some automakers, for example, want to innovate the design process using existing customer data — similar to how companies like Microsoft and Apple create iterative versions of their software product development projects.

Getting your product to market can be tough, but certain approaches can ease the burden. Create a simpler product. Fail fast and fail cheap with lean development, meaning limit your risk to maximize your return. Also, never underestimate the importance of customer feedback and intellectual property protection throughout the process.

With that said, invest in yourself and your inspiration, and you will avoid that nagging what if-mentality that drives regret. Great reward always requires risk, but there are also ways to invest smarter. Use available resources and give your dream the best chance for success.

------

Onega Ulanova is the founder of OKGlobal.

Making a product that is worth further investing in, one that customers will want to buy, requires several prototypes, sometimes tens of prototypes to prove the concept and perfect your idea. Photo courtesy of OKGlobal

Houston expert shares why prototyping is so important to startups

guest column

Rarely in life is anything perfect on the first attempt. Writers write drafts that are proofed and edited. Musicians practice over and over, and athletes train for years to perfect their skills before becoming pros. So, it only makes sense that a product developer would develop a prototype before manufacturing their products.

But why? Why can't a perfectly designed product go straight from CAD to production? In reality, making a product that is worth further investing in, one that customers will want to buy, requires several prototypes, sometimes tens of prototypes to prove the concept and perfect your idea. Success comes through practice, just like with the musicians and the athletes.

Defining "prototype"

The word prototype derives from the Greek word meaning, "primitive form." It's an early sample or model of a product built to test a concept or process. Understanding that a prototype, by definition, is an early form of your final product, know that there is often a compromise between your prototype and the final product design. Differences in materials, manufacturing processes and design may create a slightly different look and feel of your prototype.

A full design build is expensive, and it can be time-consuming, so before manufacturing, we create a prototype. This allows you to look for any flaws and problems, figure out solutions, then rebuild with the updates. The process may repeat multiple times. Rapid prototyping is often used for your initial prototype, allowing you to inexpensively build and test the parts of the design that are most likely to be flawed, solving issues on the front end, before you make the full product.

This necessary step is needed to progress with your product development and take you further toward the commercialization and marketing of your product.

Why prototype?

Prototyping allows you to learn about the product, the design, and the functionality. By doing repetitive prototyping, you eliminate the guesswork and base your decisions on actual data and facts. Don't ever guess. Just learn. Just prototype.

Market Testing
It allows you to put a product in front of your consumers, get their opinion, and make changes based on how the consumer uses the prototype.

Save Money
You get to save money on initial product testing, by letting consumers test the product the way they would use it in real life.

Make Improvements
Prototyping gives you the opportunity to make improvements before putting your product into the market. You can see where/if your idea is flawed and flush it out before you manufacture products that won't sell.

Sales Forecasting
This is a difficult enough task as it is, but when you have a new product, it's hard to predict how it will fare against other products in the market. By watching how consumers use the prototype, and by seeing it work against other products, you will begin to understand the sales cycle for that product, allowing you to start your forecasting.

Product designers cannot predict how a consumer will react to a new product, so they release several prototypes, and gather feedback, switching up the products until they find what works for the consumer. When the product went to manufacturing, and finally to market, it was almost guaranteed to be a success—an unintended use for prototyping, and yet one of its best uses.

Designers realize that what looks good on paper isn't always what the end-user is going to want. By getting an inexpensive prototype in front of consumers, designers have been able to get quick feedback, adjust the product, and create a winning product.

When it doubt, prototype it out

The beauty of prototyping is that each prototype interaction opens new opportunities to improve your product. In all reality, you will need more than one prototype to develop a truly valuable product. Product development can get bogged down in meetings, where the product is analyzed, and guesses are made as to "the best way," but by getting to the rapid prototype stage, you can skip some of that guesswork and replace it with real information from the customers.


------

Onega Ulanova is the founder of OKGlobal.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston organizations identify promising life science cos. at annual event

startups to watch

For the 13th year, the Texas Life Science Forum hosted by BioHouston and the Rice Alliance for Technology and Entrepreneurship celebrated innovative companies from around the world that are creating new treatments and solutions to today's biggest health care challenges.

This week, over 40 companies presenting their innovations across cancer, cardiovascular disease, biotechnology, and more. Nearly 700 venture capitalists, corporate innovation groups, angel networks, industry leaders, academics, service providers, and others attended the event on November 7 at Rice's BioScience Research Collaborative in the Texas Medical Center.

Just like in previous years, the event ended with the announcement of the 10 companies that were deemed "most promising" based on their pitches and technologies. Of the 10 companies named, six are headquartered in Houston and an additional two startups on the list have a presence here.

The 2024 most-promising life science companies are:

Houston-based clinical-stage cell therapy company March Biosciencesis developing a pipeline of innovative therapies, beginning with targeting relapsed an refractory T cell lymphoma.

ImmunoGenesis, headquartered in Houston, is a clinical-stage biotechnology company developing a potent PD-1 pathway targeting agent specifically engineered for immuneexcluded tumors, which account for over 50 percent of all cancers

Taurus Vascular, based in Houston, is revolutionizing endovascular aneurysm repair by addressing the critical issues of residual aneurysm pressurization and endoleaks with its catheter-deployable aortocaval shunt.

Headquartered in Australia with a Houston presence, Foxo Technologyoffers HIPAA-compliant, communication software for anyone in health care.

Another Houston company,Voythoshas built an AI platform to better predict and diagnose cardiovascular disease earlier to enhance quality and cost of care.

Dutch company Loop Robot, which has a presence in Houston, automates disinfection with its intelligent robot to make medical-grade disinfection faster, safer, and digitally auditable.

London-based Case45develops and commercializes pan-cancer prognostic tests using unique integration of tumor evolution and AI and is beginning with breast and lung cancers.

OmniNano Pharmaceuticals, headquartered in Houston, has developed a nano-drug delivery platform technology enables simultaneous co-delivery of multiple therapeutic agents designed specifically to treat solid tumors.

Houston-based clinical-stage biopharmaceutical company Mongoose Bio is pioneering first-in-class T cell receptor T cell (TCR-T) therapies for cancer treatment.

Rua Diagnosticsfrom New York is redefining point-of-care diagnostics with advanced micro gas chromatography technology for breath analysis that's capable of detecting a wide range of prevalent and deadly diseases.

In addition to this list, the event named two additional awards. United Kingdom's Cytecom, which provides quick and accurate diagnosis and treatment of blood infections stems, was selected by the crowd as the People's Choice award winner.

Last, but not least, BioHouston's Ann Tanabe awarded this year's Michael E. Debakey Award to Houston-based Autoimmunity BioSolutions, seed-stage biotech developing a next-generation, immuno-corrective therapy for treatment of autoimmune diseases to restore normal immune function.

University of Houston taps global partner to work on hydrogen, sustainability breakthroughs

team work

The University of Houston and Scotland’s Heriot-Watt University have been awarded seed grants to six energy projects, which is part of an innovative transatlantic research collaboration.

Researchers from both universities will take on projects that will concentrate on innovations that range from advanced hydrogen sensing technology to converting waste into sustainable products.

This will mark the first round of awards under the “UH2HWU” seed grant program. The program was created following the signing of a memorandum of understanding between both institutions in 2024. The universities will “seek to drive global progress in energy research, education, and innovation, with a particular focus on hydrogen as a key element in the shift toward cleaner energy,” according to a news release.

“This partnership is rooted in a shared commitment to advancing research that supports a just energy transition,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release. “Hydrogen, and in particular low carbon hydrogen, is essential to achieving sustainable energy solutions.”

The UH2HWU program provided $20,000 in seed funding to each of the projects. The program will help with the goal of helping researchers secure additional funding from private sources, companies, and government with a total of 11 proposals being submitted, and a panel of industry experts reviewing them.

One of the winning projects was titled “A joint research project on the feasibility of Repurposing Offshore Infrastructure for Clean Energy in the North Sea aka ROICE North Sea,” and was led by Ram Seetharam, ROICE Program executive director at UH, Edward Owens, professor of energy, geoscience, infrastructure and society at HWU, and Sandy Kerr, associate professor of economics at HWU.

The UH ROICE team focused on reusing old offshore structures for clean energy instead of removing them after their productive life. The UH team created cost and project models for the Gulf of Mexico and will now work with Heriot-Watt University to apply to UK North Sea. UK North Sea has over 250 platforms and about 50,000 kilometers of pipelines. To see more of the projects click here.

“We wanted to bring in industry experts to not only assess the quality of the proposals but also to attract industry support of the projects,” assistant vice president for intellectual property and industrial engagement at UH Michael Harold said in a news release. “It’s a win-win —reviewers get a first look at cutting-edge ideas, and the projects have a chance to build industry interest for future development.”

------

This article originally ran on EnergyCapital.