When approaching prototype creation, you must make a series of decisions. This expert weighs in with her expertise. Photo courtesy

When embarking on the journey of developing and bringing a new product to the market, you as an inventor have to consider a multitude of aspects that add to the overall market success of your final product. And prototyping is one of the key product development stages that helps you achieve that.

Whether you're going to launch a hardware or a software product, or the combination of both — you need to have a prototype made. First, it allows you to validate your idea and see if it's worth investing time and money into. Second, it creates opportunities for product improvement, detection and elimination of design flaws, and cost reduction, especially during manufacturing.

Therefore, you will need to make a set of choices before you actually build a prototype to ensure that it results in a viable, cost-effective, and quality market-ready product. Let's look at major choice points and their implications that will help you navigate the process in the most efficient way.

To begin, let's look at the various options you have.

The success of any process lies in its foundation. Hence, before anything else you need to decide on the product development approach you're going to follow. Some inexperienced inventors, for instance, choose to go from product idea straight to having a prototype made. They skip three initial steps that are crucial for building a sound road map of the development process and creating a product with a maximum market potential.

In most cases, those inventors end up coming to companies that build prototypes to start from scratch. Usually, it's because they hit a dead end with their prototype or a product was manufactured with many defects. The latter is always a result of improperly optimized pre-production prototype, if optimized at all.

The extensive experience of our product development team shows that a methodological approach to the entire process, prototyping in particular, yields the most effective results. That's why we always recommend it to those inventors who choose to DIY their prototype. If you're one of them, here is a short version of the approach with steps it implies that you can use prior to prototyping. You can find the in-depth version here.

1. Product discovery

To set the path for the development of your idea you need to identify your product's strengths, weaknesses, opportunities, and threats. In other words, you need to conduct a SWOT analysis, which will help you learn about:

  • intellectual property opportunities
  • your competition and target market
  • features your product should have
  • time and cost of your idea development.

2. Concept design

Based on the results of the SWOT analysis, you can establish the road map of the development of your product and get to creating a concept or industrial design. Concept design is a virtual representation of your idea translated into 2D renderings and 3D CAD models that show you a rough look and functions your product will have. These should be built in accordance with preferences of your target audience to ensure the product's market fit. Concept design is usually made by a professional Industrial Designer. But if you have a basic knowledge of how to use industrial design software applications, then you can make it yourself.

3. Market and prior art research 

Another important step before prototyping is gathering and analyzing feedback from potential consumers. This is done through market research. With a concept design developed, you can conduct focus groups and consumer surveys to understand if the audience likes your idea. The information you get will give you more opportunities to improve your idea and add necessary changes to the design before prototyping, thus reducing the cost of the process and increasing market potential.

Prior Art Search, or research of existing patents, provides some of the benefits as market research. But its main purpose is to identify similar product ideas that have already been patented, so that you can make your product stand out by adding unique features to the design, as well as avoid a conflict of patent rights.

In a follow up article next week, we will discuss more decisions you must make during the prototype process. I have also previously contributed to guest columns on the following:

------

Onega Ulanova is the founder of OKGlobal.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas female-founded companies raised more than $1 billion in 2024, VC data shows

by the numbers

Female-founded companies in Dallas-Fort Worth may rack up more funding deals and more money than those in Houston. However, Bayou City beats DFW in one key category — but just barely.

Data from PitchBook shows that in the past 16 years, female-founded companies in DFW collected $2.7 billion across 488 deals. By comparison, female-founded companies in the Houston area picked up $1.9 billion in VC through 343 deals.

Yet if you do a little math, you find that Houston ekes out an edge over DFW in per-deal values. During the period covered by the PitchBook data, the value of each of the DFW deals averaged $5.53 million. But at $5,54 million, Houston was just $6,572 ahead of DFW for average deal value.

Not surprisingly, the Austin area clobbered Houston and DFW.

During the period covered by the PitchBook data, female-founded companies in the Austin area hauled in $7.5 billion across 1,114 deals. The average value of an Austin deal: more than $6.7 million.

Historically, funding for female-established companies has lagged behind funding for male-established companies. In 2024, female-founded companies accounted for about one-fourth of all VC deals in the U.S., according to PitchBook.

PitchBook noted that in 2024, female-founded companies raised $38.8 billion, up 27 percent from the previous year, but deal count dropped 13.1 percent, meaning more VC for fewer startups. In Texas, female-founded companies brought in $1.3 billion last year via 151 deals. The total raised is the same as 2023, when Texas female founders got $1.3 billion in capital across 190 deals.

“The VC industry is still trying to find solid footing after its peak in 2021. While some progress was made for female founders in 2024, particularly in exit activity, female founders and investors still face an uphill climb,” says Annemarie Donegan, senior research analyst at PitchBook.

Here are 3 Houston innovators to know right now

Innovators to Know

Editor's note: These Houston innovators are making big strides in the fields of neurotechnology, neurodevelopmental diagnosis, and even improving the way we rest and recharge.

For our latest roundup of Innovators to Know, we meet a researcher who is working with teams in Houston and abroad to develop an innovative brain implant; a professor who has created an AI approach to diagnosis; and a local entrepreneur whose brand is poised for major expansion in the coming years.

Jacob Robinson, CEO of Motif Neurotech

Houston startup Motif Neurotech has been selected by the United Kingdom's Advanced Research + Invention Agency (ARIA) to participate in its inaugural Precision Neurotechnologies program. The program aims to develop advanced brain-interfacing technologies for cognitive and psychiatric conditions. Three Rice labs will collaborate with Motif Neurotech to develop Brain Mesh, which is a distributed network of minimally invasive implants that can stimulate neural circuits and stream neural data in real time. The project has been awarded approximately $5.9 million.

Motif Neurotech was spun out of the Rice lab of Jacob Robinson, a professor of electrical and computer engineering and bioengineering and CEO of Motif Neurotech.

Robinson will lead the system and network integration and encapsulation efforts for Mesh Points implants. According to Rice, these implants, about the size of a grain of rice, will track and modulate brain states and be embedded in the skull through relatively low-risk surgery. Learn more.

Dr. Ryan S. Dhindsa, Dhindsa Lab

Dr. Ryan S. Dhindsa, assistant professor of pathology and immunology at Baylor and principal investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, and his team have developed an artificial intelligence-based approach that will help doctors to identify genes tied to neurodevelopmental disorders. Their research was recently published the American Journal of Human Genetics.

Dhindsa Lab uses “human genomics, human stem cell models, and computational biology to advance precision medicine.” The diagnoses that stem from the new computational tool could include specific types of autism spectrum disorder, epilepsy and developmental delay, disorders that often don’t come with a genetic diagnosis.

“Although researchers have made major strides identifying different genes associated with neurodevelopmental disorders, many patients with these conditions still do not receive a genetic diagnosis, indicating that there are many more genes waiting to be discovered,” Dhindsa says. Learn more.

Khaliah Guillory, Founder of Nap Bar

From nap research to diversity and inclusion, this entrepreneur is making Houston workers more productiveFrom opening Nap Bar and consulting corporations on diversity and inclusion to serving the city as an LGBT adviser, Khaliah Guillory is focused on productivity. Courtesy of Khaliah Guillory

Khalia Guillory launched her white-glove, eco-friendly rest sanctuary business, Nap Bar, in Houston in 2019 to offer a unique rest experience with artificial intelligence integration for working professionals, entrepreneurs and travelers who needed a place to rest, recharge and rejuvenate.

Now she is ready to take it to the next level, with a pivot to VR and plans to expand to 30 locations in three years.

Guillory says she’s now looking to scale the business by partnering with like-minded investors with experience in the wellness space. She envisions locations at national and international airports, which she says offer ripe scenarios for patrons needing to recharge. Additionally, Guillory wants to build on her initial partnership with UT Health by going onsite to curate rest experiences for patients, caregivers, faculty, staff, nurses and doctors. Colleges also offer an opportunity for growth. Learn more.

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."