From a lab in Rice University to a potential shelf life in stores, the innovation of food coating is just beginning. Photo courtesy of Rice University

Hunger impacts over 800 million people worldwide, leaving nearly 10 percent of the population suffering from chronic undernourishment. The distressing reality of food shortages co-exists in a world where 1.3 billion tons of food — nearly a third of what's produced — is wasted each year, according to the Food and Agriculture Organization of the United Nations. Rice University's scientific research team's latest discovery takes a crack at ending food shortages and improving sustainability with a common kitchen necessity: eggs.

The discovery of egg-based coating is promising to researchers, as it manages to both prolong produce shelf-life by double while impacting the environment.

"We are reducing the cost, and at the same time we are reducing the waste," says Muhammad M. Rahman, a research scientist at Rice University. "One in every eight people are hungry...on the other side, 33 percent of food is wasted."

It's no secret that overflowing landfills contribute to the climate crisis, piling high with food waste each year. While the United States produces more than seven billion eggs a year, manufacturers reject 3 percent of them. The Rice University researchers estimate that more than 200 million eggs end up in U.S. landfills annually.

According to the Environmental Protection Agency, half of all landfill gas is methane, a hazardous greenhouse gas that contributes to detrimental climate change. Landfills are the third-largest contributor to methane emissions in the country, riding the coattails of agriculture and the energy industry.

COVID-19 has upended supply chains across the nation, and in recent months food waste has become an even more pressing issue. The disruptions of consumer purchasing habits and the indefinite closures of theme parks and select restaurants put a burden on farmers who planned for larger harvests and restaurants unsure of how to adjust. With more Americans cooking at home, panic-buying from grocery stores is also playing a role in accumulating waste.

To understand the challenges of the food industry, it's important to acknowledge the biggest menace to the supply chain: perishability. Fruits and vegetables only last a few days once arriving in grocery stores due to culprits like dehydration, texture deterioration, respiration and microbial growth. Rice University researchers sought to create a coating that addresses each of these issues in a natural, cost-effective way.

Brown School of Engineering materials scientist, Pulickei Ajayan, and his colleagues, were looking for a protein to fight issues like food waste. Rahman, a researcher in Ajayan's lab, received his Ph.D. from Cornell University studying the structure-property relationship in green nanocomposites. He and his fellow researchers found that egg whites were a suitable protein that wouldn't alter the biological and physiological properties of fruit. The study published in Advanced Materials took one year and three months to complete.

According to Rahman, the egg-based coating is non-toxic, biodegradable and healthier than other alternatives on the market. Wax is one common method of fruit preservation that can result in adverse effects on gut cells and the body over time.

"Long-term consumption of wax is not actually good and is very bad for your health," says Dr. Rahman. After wax is consumed, gut cells fragment the preservatives in wax to ions. This process can have a negative impact on "membrane disruption, essential metabolite inhibition, energy drainage to restore homeostasis, and reductions in body-weight gain," according to the research abstract.

Preservation efforts like wax, modified atmospheric packaging and paraffin-based active coatings are not only more expensive and less healthy, but they also alter the taste and look of fruits.

"Reducing food shortages in ways that don't involve genetic modification, inedible coatings or chemical additives is important for sustainable living," Ajayan states in a press release.

The magic of preservation is all in the ingredients. Rice University's edible coating is mostly made from household items. Seventy percent of the egg coating is made from egg whites and yolk. Cellulose nanocrystals, a biopolymer from wood, are mixed with the egg to create a gas barrier and keep the produce from shriveling. To add elasticity to the brittle poly-albumen (egg), glycerol helps make the coating flexible. Finally, curcumin—an extract found in turmeric—works as an antibacterial to reduce the microbial growth and preserve the fruit's freshness.

The experiment was done by dipping strawberries, avocados, papayas and bananas in the multifunctional coating and comparing them with uncoated fruits. Observation during the decaying process showed that the coated fruits had about double the shelf-life of their non-coated counterparts.

For people with egg allergies, the coating can be removed simply by rinsing the produce in water. Rice University researchers are also beginning to test plant-based proteins for vegan consumers.

For its first iteration, Rahman finds that the coating shows "optimistic results" and "potential" for the future of food preservation.

"These are already very green materials. In the next phase, we are trying to optimize this coating and extend the samples from fruits to vegetables and eggs," says Rahman.

Researchers will also work to test a spray protein, making it easier for both commercial providers as well as consumers looking for an at-home coating option. From a lab in Rice University to a potential shelf life in stores, the innovation of food coating is just beginning.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”