From robotics to artificial intelligence, here's how Amazon gets its products to Houstonians in record time. Photo by Natalie Harms/InnovationMap

Last summer, Amazon opened the doors to its North Houston distribution center — one of the company's 50 centers worldwide that uses automation and robotics to fulfill online orders.

The Pinto Business Park facility has millions of products in inventory across four floors. Products that are 25 pounds or less (nothing heavier is stocked at this location) pass through 20 miles of conveyor belts, 1,500 employees, and hundreds of robots.

The center also has daily tours open to the public. We recently visited to see for ourselves the process a product goes through at this Houston plant. From stowing to shipping, here's how packages go from your shopping cart to your front porch.

Starting with stowing 

Natalie Harms/InnovationMap

A product's first step in an Amazon facility is stowing. There's no categorization of the products — it's not like there's one floor for one type of item or anything.

"It's completely randomly stowed," says Donna Beadle, PR specialist for Amazon. "She could be stowing cat food on this floor, and so could somebody on floor two."

An Amazon employee would scan an item and stow it into an empty bin of her choosing — sort of. To prevent confusion, a light projected indicates bins that are off limits to stow the item. The light identifies bins that have similar products. Keeping similar products apart helps prevents mistakes for the employee who later pulls those items once its ordered.

The system also sees where the employee is putting each item, rather than having to scan each item and the bin as well. This is a newer feature — the facility originally opened with hand-held scanners.

"Our next generation workstation is that they don't have to hold that scanner — they have hands free," says Brenda Alford, regional communications manager at Amazon.

Robots on the move

Once the bins are fully stocked, the robot — which is the orange device on the bottom of the yellow bins — moves about the facility by scanning QR codes on the floor.

Should a product fall out, an employee wearing a special vest can enter to retrieve it. That vest will send off a signal to the robots, which will then decrease their speeds and come to a stop when the employee comes close.

"It's an extra measure of safety so that people can interact with the robots and feel safe," says Beadle.

Picking before packing

Natalie Harms/InnovationMap

Once an item is ordered, the bin with that item appears in the pick process at the center. The system tells the Amazon employee which item to grab and which bin to put it in. The bins will have products for multiple different orders — another employee later will separate it out later.

"Often we describe it as a symphony — our technology and our associates working together," Alford says, noting that sometimes the company might receive criticism about using robots over humans. "We can't do this without these humans.

Amazon employees receive their benefits from day one on the job, Beadle says, and they work four, 10-hour days a week.

"We feel like that way they have more time with their families — they get three days off versus two days off. And that gives them time to heal and rest up," she says.

Bin to bin and back again

Natalie Harms/InnovationMap

Once full, the Amazon associate will push the bin onto a series of conveyor belts. The whole facility has 20 miles of conveyor belts — much of which happens overhead.

The bins then zigzag toward the pack process, which is separated to different stations. There are single-product stations and multiple package stations. The system determines where the bin should go, and some stations pack products that are determined to need packing materials, while others do not.

Single-product packaging

Natalie Harms/InnovationMap

At the packing process, the Amazon employee is told which size box to assemble — he or she can grab a bigger box, but they can't select a smaller one. The tape dispenser doles out the correct size of tape for that box automatically.

Once packaged up, a sticker with a barcode is placed on the box. This code will later be used to print the label for shipping. At this point in the process, no personal information has been revealed to anyone. In fact, most packages leave the facility without any personal information being viewed by employees.

In an effort to reduce packing materials, some products are shipped in the container they came in. In that instance, the packer would just place the barcode sticker on the package before sending it on the conveyor belt.

"If we don't need another box for that product, we don't use one," Beadle says. "We work with companies to make that happen, so we don't have to use more boxes if we don't have to."

SLAM 


While the robotics aren't slamming labels on packages, the SLAM process (short for scan, label, apply and manifest) is the first step in the process that includes a customer's personal information. During this process, the barcode is scanned, the package is weighed, and the label is printed and affixed to the package using a puff of air.

A package might be automatically pulled from the line if something seems to be off in the package's weight.

"Say you bought toothpaste, and it says that toothpaste weighs 20 pounds, we know something's wrong," Beadle says. "Like maybe that it was a pack that didn't get separated."

If the package is kicked off, an Amazon associate, called a problem solver, will assess the situation and make it right before returning it to the conveyor belt.

Kicked into gear

Once labeled, all the packages are sent on their final conveyor belt ride. Using a scanning process, the packages are kicked by an automated foot that sends them into a line to be loaded into an Amazon truck.

If a package misses its chute the first time around, it makes the loop again. The system can tell if a package is caught in the loop for whatever reason, and a problem solver might be called to assess the situation.

Down the slide

Natalie Harms/InnovationMap

After being kicked off the belt, the package then slides down a spiral chute that, despite looking like a playground slide, is off limits to any humans wanting to keep their job.

"People ask if you can go down the slide, and we always say that on your last day of work," Beadle jokes.

On to the shipping process

Natalie Harms/InnovationMap

The packages leave the facility in Amazon trucks and head to one more pit stop before making it to the customer.

"They don't go directly to your house after this process," Beadle says. "They go to a sortation center."

This could mean a USPS or UPS stop, but it depends on where the customer lives.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston robotics co. closes series B after year of growth

money moves

Houston- and Boston-based Square Robot Inc. closed a series B round of funding last month.

The advanced submersible robotics company raised $13 million, according to Tracxn.com, and says it will put the funds toward international expansion.

"This Series B round, our largest to date, enables us to accelerate our growth plans and meet the surging global demand for our services,” David Lamont, CEO, said in a statement.

The company aims to establish a permanent presence in Europe and the Middle East and grow its delivery services to reach four more countries and one new continent in Q1 2025.

Additionally, Square Robot plans to release a new robot early next year. The robot is expected to be able to operate in extreme temperatures up to 60 C. The company will also introduce its first AI-enabled tools to improve data collection.

Square Robot launched its Houston office in 2019. Its autonomous, submersible robots are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments.

The company was one of the first group of finalists for the Houston Innovation Awards' Scaleup of the Year, which honors a Bayou City company that's seen impressive growth in 2024. Click here to read more about the company's growth.

------

This article originally ran on EnergyCapital.

Show me the money: Top Houston innovation grant and gift news of 2024

year in review

Editor's note: As the year comes to a close, InnovationMap is looking back at the year's top stories in Houston innovation. Money means a lot to startups and other innovative entities, and while startups are usually scouting venture capital investors, grants and donations are key too. These are the most-read news articles about grants and gifts — be sure to click through to read the full story.

Rice researchers secure $35M federal grant to advance medical device technology

Rice’s Biotech Launch Pad will lead the effort to commercialize the device. Photo courtesy Rice University

Rice University has secured part of a nearly $35 million federal grant aimed at commercializing a bioelectric implant for treatment of type 2 diabetes and obesity.

The federal Advanced Research Projects Agency for Health awarded the $34.9 million grant to Rice and several other universities.

Rice’s Biotech Launch Pad will lead the effort to commercialize the self-contained, implantable Rx On-site Generation Using Electronics (ROGUE) device. ROGUE houses cells that are engineered to produce type 2 diabetes and obesity therapies in response to patients’ needs. Continue reading.

Houston health care institutions receive $22M to attract top recruits

The grants, which are between $2 million to $6 million each, are earmarked for recruitment of prominent researchers. Photo via Getty Images

Houston’s Baylor College of Medicine has received a total of $12 million in grants from the Cancer Prevention & Research Institute of Texas to attract two prominent researchers.

The two grants, which are $6 million each, are earmarked for recruitment of Thomas Milner and Radek Skoda. The Cancer Prevention & Research Institute of Texas (CPRIT) announced the grants May 14.

Milner, an expert in photomedicine for surgery and diagnostics, is a professor of surgery and biomedical engineering at the Beckman Laser Institute & Medical Clinic at the University of California, Irvine and the university’s Chao Family Comprehensive Cancer Center. Continue reading.

New report ranks Houston top market for life sciences

Houston lands in the No. 7 spot for growth in the granting of degrees in biological and biomedical sciences. Photo by Natalie Harms/InnovationMap

Thanks in large part to producing hundreds of college-trained professionals, Houston’s life sciences industry ranks among the top U.S. markets for talent in 2024.

In a report published by commercial real estate services company CBRE, Houston lands in the No. 7 spot for growth in the granting of degrees in biological and biomedical sciences. From 2017 to 2022, Houston notched a growth rate of 32.4 percent in this category.

In 2022, the University of Houston led the higher education pack in the region, graduating 746 people with a bachelor’s degree or above in biological or biomedical sciences, according to the report. Continue reading.

Texas organization grants $68.5M to Houston institutions for recruitment, research

Several Houston organizations have received millions from the Cancer Prevention and Research Institute of Texas. Photo via tmc.edu

Three prominent institutions in Houston will be able to snag a trio of high-profile cancer researchers thanks to $12 million in new funding from the Cancer Prevention and Research Institute of Texas.

The biggest recruitment award — $6 million — went to the University of Texas MD Anderson Center to lure researcher Xiling Shen away from the Terasaki Institute for Biomedical Innovation in Los Angeles.

Shen is chief scientific officer at the nonprofit Terasaki Institute. His lab there studies precision medicine, including treatments for cancer, from a “systems biology perspective.” Continue reading.

Houston health care institution secures $100M for expansion, shares renderings

Baylor College of Medicine's Lillie and Roy Cullen Tower is set to open in 2026. Rendering courtesy of SLAM Architecture

Baylor College of Medicine has collected $100 million toward its $150 million fundraising goal for the college’s planned Lillie and Roy Cullen Tower.

The $100 million in gifts include:

  • A total of $30 million from The Cullen Foundation, The Cullen Trust for Health Care, and The Cullen Trust for Higher Education.
  • $12 million from the DeBakey Medical Foundation
  • $10 million from the Huffington Foundation
  • More than $45 million from members of Baylor’s Board of Trustees and other community donors, including the M.D. Anderson Foundation, the Albert and Margaret Alkek Foundation, and The Elkins Foundation.

“The Cullen Trust for Health Care is very honored to support this building along with The Cullen Foundation and The Cullen Trust for Higher Education,” Cullen Geiselman Muse, chair of The Cullen Trust for Health Care, says in a news release. “We cannot wait to see what new beginnings will come from inside the Lillie and Roy Cullen Tower.” Continue reading.

TMC launches cancer-focused partnership with Japan

global collaboration

Houston's Texas Medical Center announced the launch of its new TMC Japan BioBridge and Japan-Accelerator Cancer Therapeutics and Medical Devices, or JACT, this month.

The strategic partnership between Japan-based Mitsui Fudosan Co. Ltd. and the National Cancer Center will focus on advancing cancer treatments and providing a pathway for Japanese innovators to expand in the U.S. market. A delegation from TMC recently visited Tokyo, and William F. McKeon, president and CEO of TMC, signed the TMC Japan BioBridge Memorandum of Understanding with Takeshi Ozane, general manager of Mitsui Fudosan, and Hitoshi Nakagama, president of the National Cancer Center of Japan.

“The launch of TMC Japan BioBridge is a vital step forward in connecting two global leaders in healthcare innovation,” McKeon says in a statement. “Japan’s leadership has demonstrated an impressive commitment to advance medical cures and life sciences technologies and through this partnership, we are opening necessary doors for Japanese researchers and innovators to access the US market and collaborate with our TMC ecosystem. Together, we aim to accelerate critical breakthroughs to make a difference for patients all around the world.”

The new JACT will offer cancer-treatment companies a structured process to prepare for a U.S. expansion and will allow for meetings with pharmaceutical companies, hospital systems and investors and provide insights on U.S. regulatory approvals. It'll focus on three key areas, according to the statement:

  1. Milestone development and financial planning
  2. Clinical and regulatory expertise
  3. Strategic partnerships and market insights

“This TMC Japan BioBridge and JACT Program will enable us to promote the advancement of start-up companies aiming to commercialize innovative medical technologies originating in Japan into the U.S." Nakagama says in a statement. "We also hope this collaboration will not be limited to our (Japan Agency for Medical Research and Development)-supported project, but will lead to further cooperation between TMC, NCC, and other Japanese institutions in various fields.”

This is the sixth international strategic partnership for the TMC. It launched its first BioBridge, which focus on partnerships to support international healthcare companies preparing for U.S. expansion, with the Health Informatics Society of Australia in 2016. It also has BioBridge partnerships with the Netherlands, Ireland, Denmark and the United Kingdom.