The new technology from University of Houston could make any mask more resistant to viruses. Photo courtesy of Seamus Curran/Integricote

The start of 2020, though most didn't know it at the time, meant a huge change to society. Though coronavirus didn't yet seem to be an issue for the United States, the world was entering into a new normal where wearing face masks in public is common and necessary to prevent the spread of COVID-19.

"We left normal in December," says Seamus Curran, a professor of physics at the University of Houston, "and, when everyone was planning their New Year's resolutions, little did we know that the old normal of before is gone. None of us saw that life passing away — and it was taken away by a bug 1,000 times smaller than lice. And like lice, it's going to be with us for a long time."

To that end, Curran, who is well-known for his work commercializing nanotechnologies, is pulling from his past to deal with a future demand. The professor is using a hydrophobic coating he developed nearly 10 years ago to improve the ability of surgical masks to protect against transmission of the virus.

It's no secret that good face masks are a dire, worldwide need. But Curran notes that standard masks are "somewhat porous, and especially if they get wet, they can allow the virus to penetrate." People infected with the virus, he adds, could spread it even through a mask, while people who aren't sick could still become infected, despite wearing a less-protective mask.

Curran calls N95 masks, "the gold standard, able to filter very small particles and offering better protection than standard surgical masks." But he notes that they are hard to manufacture, and global demand is for tens of millions of items. His work will make masks impervious to water, thus improving protection, he explains.

That means those who already own masks are in luck: Curran's team is planning to sell spray for the hydrophobic coatings so that people can apply it themselves at home or at work. "However, it's cheaper and far more effective to be able to apply it in large batch quantities that manufacturers can do," Curran adds.

The globally minded Curran has only one local requirement: "We will only sell to U.S. manufacturers that manufacture here in the U.S. It's not a limiting factor and may change in the future, but right now, I have to deal with my community here in Houston, Texas, and the U.S. It has to be my priority."

University of Houston's Dr. Seamus Curran. Photo courtesy of University of Houston

Curran and his team are working though the process to make sure their coatings are compliant with all federal rules. "Sometimes, this is making sure your materials are registered and allowed," he says. "Sometimes it's making sure the products follow relevant EPA and FDA guidelines. However, we are very close, as in weeks, and not some arbitrary academic timeline in the distant future."

He first launched a nanotechnology business in 2013, according to UH. His company, Integricote, based at the UH Technology Bridge, focuses on manufacturing sealers for masonry, wood, and concrete. The professor has developed nanotech coatings for fabrics since 2011, technology that he now is using to demonstrate a way to provide more protection against SARS and COVID-19.

Curran, who often says he hates to "play defense," hopes to get a jump on the virus spread with his new technology and take a proactive approach to a long-term issue. "Remember, H1N1 affected 61 million Americans and 12,500 people died from it between 2009 and 2010," he notes. "Do we think that's it? Did we think Ike was the last big hurricane to hit us, or do we expect more? Yet, we have compensated for this and found a way to be resilient and have a normal life."

Technical and scientific in his work, the passionate professor says he is galvanized by a simple, primal motive. "This is personal, this virus has threatened my family and I'm not sitting back, ideally, just letting this happen," Curran says. "I'm just like any other husband, father, son, brother, and uncle: I will do all I can to protect those dearest to me and I will not have it any other way."

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.