The Karimi siblings have created a way to synthetically convert CO2 into glucose, and they are targeting the energy and aerospace industries for their technology. Courtesy of Cemvita Factory

Houston-based Cemvita Factory is unlike most startups. Before even knowing what industry they were going to affect, Moji Karimi and his sister, Tara, established their company, which uses synthetic photosynthesis — the process of turning carbon dioxide into glucose for plants.

"In some ways, this company started with the solution, rather than the problem," Moji Karimi, co-founder of Cemvita, says. "Then we said, 'if we could replicate photosynthesis, what problems can we solve?'"

Once the technology was set in place, Karimi, who has a background in oil and gas drilling, says he identified the energy industry in need of something like this. He says he saw an increased pressure on large energy companies to adapt sustainable ways to get rid of the CO2 that is produced as a result of drilling.

More and more companies are investing in a process called carbon dioxide capturing — but it's expensive and not yet cost efficient for energy companies to commit to. But that's changing. Karimi says the process that once cost $600 per ton of CO2 now can be found as cheap as $30.

With his sister's technology, Karimi says they can take that captured carbon dioxide and turn it into other chemicals too. Each oil and gas company client can specify what they want to turn it into and, for less than $100,000, Cemvita will run a pilot program for them. Cemvita sells the exclusive rights to the technology, but still maintains its IP.

"We go to these companies and say, 'What do you want to convert CO2 into?,'" Karimi says. "Then, we do a quick pilot in six months in our lab, and we show them the metrics. They decide if they want to scale it up."

What seemed like another obvious industry for this process was aerospace. Many companies involved in aerospace exploration have Mars on the mind, and the planet's atmosphere is over 95 percent carbon dioxide. Plus, Cemvita can provide a more sustainable way to dispose of CO2 onboard spacecrafts. The current practice is essentially just discarding it by filtering it off the spaceship.

Putting a system in place
Cemvita was founded in August of 2017 and used 2018 to really establish itself. The company took second place at Dubai's Mohammed bin Rashid Space Centre Innovation Challenge and completed the accelerator program at Capital Factory.

Realizing the process is new and without the backing of an educational institution, Karimi says he and his sister needed a way to answer any questions and concerns, so Tara wrote a book. "Molecular Mechanisms of Autonomy in Biological Systems" is published by Springer.

Karimi also lead a talk at Tudor Pickering Holt's Energy Disruptor conference. His discussion, "From Mars to Midland," garnered a lot of interest from energy professionals.

The future is now
Karimi says 2019 is all about execution. He never thought he and his sister would overlap their industries, but now there's more of a need of interdisciplinary collaboration than ever before.

"There are a lot of opportunities bringing a proven science or technology from one industry into another to solve problems," he says.

The company has growth plans this year. The team has bootstrapped everything financially so far, but is looking for its first funding round in the middle of 2019. And, as far as the Karimi siblings are concerned, they are in the exact right place to grow.

"We're in Houston, and we have a technology that is from biotech and have applications in the space industry and the energy industry," Karimi says. "There would not have been any better place for us in the country than Houston."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston robotics co. unveils new robot that can handle extreme temperatures

Hot New Robot

Houston- and Boston-based Square Robot Inc.'s newest tank inspection robot is commercially available and certified to operate at extreme temperatures.

The new robot, known as the SR-3HT, can operate from 14°F to 131°F, representing a broader temperature range than previous models in the company's portfolio. According to the company, its previous temperature range reached 32°F to 104°F.

The new robot has received the NEC/CEC Class I Division 2 (C1D2) certification from FM Approvals, allowing it to operate safely in hazardous locations and to perform on-stream inspections of aboveground storage tanks containing products stored at elevated temperatures.

“Our engineering team developed the SR-3HT in response to significant client demand in both the U.S. and international markets. We frequently encounter higher temperatures due to both elevated process temperatures and high ambient temperatures, especially in the hotter regions of the world, such as the Middle East," David Lamont, CEO of Square Robot, said in a news release. "The SR-3HT employs both active and passive cooling technology, greatly expanding our operating envelope. A great job done (again) by our engineers delivering world-leading technology in record time.”

The company's SR-3 submersible robot and Side Launcher received certifications earlier this year. They became commercially available in 2023, after completing initial milestone testing in partnership with ExxonMobil, according to Square Robot.

The company closed a $13 million series B round in December, which it said it would put toward international expansion in Europe and the Middle East.

Square Robot launched its Houston office in 2019. Its autonomous, submersible robots are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments.

---

This article originally appeared on EnergyCapitalHTX.com.

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.