Today starts classes in San Jacinto College's new center. Photo via sanjac.edu

San Jacinto College is gearing up to open the Center for Petrochemical, Energy, and Technology at its main campus in Pasadena — a $60 million project designed to bolster the Houston area's petrochemical workforce.

On August 21, the community college hosted media tours of the Center for Petrochemical, Energy, and Technology (CPET). The center will welcome more than 2,800 students August 26 and host a grand opening September 18. The college broke ground on the 151,000-square-foot center in September 2017.

At CPET, future and current petrochemical workers will learn about process operations, troubleshooting, nondestructive testing, instrumentation, and myriad other aspects of the industry. In all, CPET will offer 75 courses. The center's highlights include an 8,000-square-foot glycol distillation unit, 35 labs, and 19 classrooms. San Jacinto College bills the center as the largest petrochemical training site in the Gulf Coast region.

"Four years ago, a team came together from San Jacinto College and the East Harris County Manufacturers Association to put together a long-term plan for workforce development," says Jim Griffin, associate vice chancellor at San Jacinto College and senior vice president of petrochemical, energy, and technology. "The Center for Petrochemical, Energy, and Technology was part of that plan and is now a reality."

Griffin says the curriculum, classrooms, and labs were "designed and influenced" by the petrochemical industry.

Among CPET's more than 20 partners are:

  • Emerson, which donated more than $1.3 million worth of services and equipment.
  • INEOS Olefins & Polymers USA, which contributed $250,000 in cash.
  • Dow Chemical, which donated $250,000 in cash.

All three of those employers — and many others in the region — depend on schools like San Jacinto College to contribute to the pool of highly trained workers in the petrochemical sector.

"We expect to see a higher-than-normal level of retirements over the next five plus years; rebuilding our workforce is critical at this time," Jeff Garry, Dow Chemical's operations director in the Houston area, said when his company's CPET donation was announced. "The need to train and adequately staff our assets will continue to be a pressing concern. As the labor market becomes more competitive for talent, we understand the importance to attract and retain highly skilled and educated workers."

With four campuses in Harris County, San Jacinto College promotes itself as a training hub for the country's largest petrochemical manufacturing complex, featuring 130 plants and employing about 100,000 people. CPET will serve as the centerpiece of that hub. Overall, the community college says it "plays a vital role in helping the region maintain its status as the 'Energy Capital of the World.'"

PetrochemWorks.com — a petrochemical career initiative whose backers include JPMorgan Chase & Co., the Council for Adult and Experiential Learning, and the East Harris County Manufacturing Association — says the local petrochemical industry will need 19,000 more skilled workers annually over the next three to five years.

"Chronic shortages of skilled labor are increasing costs and schedules and resulting in declining productivity, lower quality, more accidents, and missed objectives," according to Petrochemical Update, a news website.

Although robots are on the rise in many industries, Mark Mills, a senior fellow at the Manhattan Institute who's an energy and technology expert, believes that as petrochemical companies increasingly turn to automation, productivity will go up, ultimately creating more jobs — not fewer.

"In large part," Mills writes, "it's desperation, not an infatuation with tech or cost savings, that drives employers to deploy technologies that amplify the capabilities of the employees they have and can find. It is a common misconception to think that automation is always cheaper than using labor."

Penrose's advance process control software can increase production by 10 to 15 percent in downstream oil and gas refineries. Pexels

Houston oil and gas software company is increasing downstream productivity while lowering emissions

Efficient energy

In the next 30 years, the world will need 30 percent more energy due to population growth. While energy production will increase to keep up with demand, there is an increasing concern with the impact on the environment.

"How do you produce more energy without emission increases or more air quality pollution?" asks Erdin Guma, CFO of Penrose Technologies.

According to Guma, Penrose is uniquely well-suited to solve these serious challenges with its advanced process control technology increases the productivity of a chemical plant or refinery by 10 to 15 percent. The increase in productivity means the plants use less fuel to produce the energy. The plant then releases fewer emissions while producing the same amount of energy.

The technology itself is an automation software — similar to autonomous software on a plane. The autonomous operation increases downstream productivity, which brings about the energy efficiency.

"Our autopilot software (like a human operator) can manage and foresee any unexpected disturbances in the plant," Guma explains. "The achievements that the Penrose technology has brought about seemed impossible to chemical and process engineers in the refinery space a few years ago."

Penrose recently signed its first project with one of the biggest downstream firms in the world. With a network of refineries and petrochemical plants around the world, this contract could lead to a global roll out of the Penrose technology.

A ground-breaking technology for O&G
The word "Penrose" is taken from a penrose triangle, an impossible geometrical object. Guma explained that the energy efficiency brought about from their software seemed impossible at first. Penrose has been able to reduce emissions inside plants and refineries by 15 to 20 percent while keeping production at the same level.

In 2007, a chief engineer working at a major oil and gas processing plant in Houston procured the technology for one of his plants. When the engineer saw how well the technology worked, he founded Penrose Technologies in 2017 with Tom Senyard, CTO at Penrose, who originally developed the technology.

After starting the company at the end of 2007, Penrose joined Station Houston. Guma said that by becoming a member, Penrose was able to plug into a large refining and petrochemical network.

"Penrose Technologies is completely self-financed. We worked with [Station Houston] as we finalized the software to find out what potential customers thought of the product. For us, Station Houston has been a great sounding board to potential investors in the company," Guma says.

Guma also explained that while there has been an uptick in innovation in the last few years, the refining and petrochemical business is traditional a slow mover in the uptake of innovation.

"I think more major oil and gas firms are becoming attune to startups and the innovation solutions they offer," Guma says.

He went on to explain that the biggest challenge Penrose faces is perception. Since the software allows plant operators and engineers at the plant to be hands off in the processes, there is a concern with reliability. For industry insiders, any viable product must be reliable even when process conditions at the plant change, which can happen often.

"The Penrose software is maximum hand off control from operators, and the reliability of our software gives us a huge edge in other competing products that can be unreliable," Guma says.

Future growth on a global market
Given the pressing need for more environmentally sustainable energy production, new technology will be adopted in the oil and gas energy. As Guma explains it, there will be no way to continue producing energy as it's been produced for decades because the negative effects of air pollution and emissions will be too severe — particularly in the areas where refineries operate.

"We see the global market for this type of technology as severely underserved," Guma says. "It's a big and sizable market, and I think we can reach a $2 to $3 billion valuation in the next five years."

With a core team of six employees in Houston, Penrose's software is now commercially available, and the company is in full growth mode at this point. The software can be distributed directly to customers, but they are working to develop distribution with major engineering companies as well.

Guma is grateful to be in an environment conducive to energy start-ups. He sees Houston as a major advantage given its proximity to the energy sector.

"No technology rises up in a vacuum. Any new technology needs a good ecosystem to come from," says Guma. "Houston was that ecosystem for Penrose."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Rice launches 'brain economy' initiative at World Economic Forum

brain health

Rice University has launched an initiative that will position “brain capital” as a key asset in the 21st century.

Rice rolled out the Global Brain Economy Initiative on Jan. 21 at the World Economic Forum in Davos, Switzerland.

“This initiative positions brain capital, or brain health and brain skills, at the forefront of global economic development, particularly in the age of artificial intelligence,” the university said in a news release.

The Rice-based initiative, whose partners are the University of Texas Medical Branch in Galveston and the Davos Alzheimer’s Collaborative, aligns with a recent World Economic Forum and McKinsey Health Institute report titled “The Human Advantage: Stronger Brains in the Age of AI,” co-authored by Rice researcher Harris Eyre. Eyre is leading the initiative.

“With an aging population and the rapid transformation of work and society driven by AI, the urgency has never been greater to focus on brain health and build adaptable human skills—both to support people and communities and to ensure long-term economic stability,” says Amy Dittmar, a Rice provost and executive vice president for academic affairs.

This initiative works closely with the recently launched Rice Brain Institute.

In its first year, the initiative will establish a global brain research agenda, piloting brain economy strategies in certain regions, and introducing a framework to guide financial backers and leaders. It will also advocate for public policies tied to the brain economy.

The report from the McKinsey Health Institute and World Economic Forum estimates that advancements in brain health could generate $6.2 trillion in economic gains by 2050.

“Stronger brains build stronger societies,” Eyre says. “When we invest in brain health and brain skills, we contribute to long-term growth, resilience, and shared prosperity.”