Window-retrofitting climatetech company has raised its first round of funding. Photo via inovues.com

A Houston startup that retrofits windows with smart glass innovations to reduce energy use has raised its first round of funding.

INOVUES closed its seed round at $2.75 million last month. The oversubscribed round was led by Dallas-based Paulos Holdings with participation from new and existing investors, including Houston-based VC Fuel, Saint-Gobain NOVA, Fund4SE, Momentum Glass, Lateral Capital, E8 Angels, and the Central Texas Angel Network.

"Our mission is to help cities achieve their energy efficiency and emissions-reduction targets by increasing the rate of window upgrades in existing buildings," says INOVUES founder and CEO, Anas Al Kassas, in a news release. "To achieve that, we have developed a low-carbon, high-ROI retrofit solution that makes upgrading building windows a financially attractive energy conservation measure instead of a massive capital upgrade associated with business disruptions and prohibitive payback periods."

Up to 40 percent of the energy loss in buildings comes from windows, per the release, and buildings as a whole represent the largest energy-consuming sector. The climatech company's patented Glazing Shield system provides a lower cost and less intrusive solution to complete window replacement.

"INOVUES is a game-changer in the energy efficiency market because it has developed an innovative, patented building retrofit solution that significantly reduces the energy usage and carbon emissions of existing buildings at a fraction of the cost of more expensive standard building retrofit options," says Ahmad Atwan, founder and CEO of VC Fuel, in the release. "We are excited that INOVUES has been recognized as the industry leader by winning prestigious green building awards on both domestic and international levels. At a time when cities are encouraging, and sometimes mandating, building owners to reduce energy consumption and carbon emissions, INOVUES has become the logical solution to such challenges."

The fresh funding will go toward growing the INOVUES team, expanding commercialization efforts, and scaling its technology.

"INOVUES' technology can radically shrink the carbon footprint of 20th-century buildings and help commercial real estate owners meet their sustainability and ESG goals with no tenant disruption and in many cases with payback periods of less than five years plus incentives," says John Paulos, vice president of Paulos Holdings, in the release. "It is exciting for us to be a part of the journey INOVUES is taking to mitigate climate change and accelerate the transition to a sustainable cleaner world."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC lands $3M grant to launch cancer device accelerator

cancer funding

A new business accelerator at Houston’s Texas Medical Center has received a nearly $3 million grant from the Cancer Prevention and Research Institute of Texas.

The CPRIT grant, awarded to the Texas Medical Center Foundation, will help launch the Accelerator for Cancer Medical Devices. The accelerator will support emerging innovators in developing prototypes for cancer-related medical devices and advancing them from prototype to clinical trials.

“The translation of new cancer-focused precision medical devices, often the width of a human hair, creates the opportunity to develop novel treatments for cancer patients,” the accelerator posted on the CPRIT website.

Scientist, consultant, and entrepreneur Jason Sakamoto, associate director of the TMC Center for Device Innovation, will oversee the accelerator. TMC officials say the accelerator builds on the success of TMC Innovation’s Accelerator for Cancer Therapeutics.

Each participant in the Accelerator for Cancer Medical Devices program will graduate with a device prototype, a business plan, and a “solid foundation” in preclinical and clinical strategies, TMC says. Participants will benefit from “robust support” provided by the TMC ecosystem, according to the medical center, and “will foster innovation into impactful and life-changing cancer patient solutions in Texas and beyond.”

In all, CPRIT recently awarded $27 million in grants for cancer research. That includes $18 million to attract top cancer researchers to Texas. Houston institutions received $4 million for recruitment:

  • $2 million to the University of Texas MD Anderson Cancer Center to recruit Rodrigo Romero from Memorial Sloan Kettering Cancer Center in New York City
  • $2 million to MD Anderson to recruit Eric Gardner from Weill Cornell Medicine in New York City

A $1 million grant also went to Baylor College of Medicine researcher Dr. Akiva Diamond. He is an assistant professor at the medical college and is affiliated with Baylor’s Dan L. Duncan Comprehensive Cancer Center.

Houston students develop cost-effective glove to treat Parkinson's symptoms

smart glove

Two Rice undergraduate engineering students have developed a non-invasive vibrotactile glove that aims to alleviate the symptoms of Parkinson’s disease through therapeutic vibrations.

Emmie Casey and Tomi Kuye developed the project with support from the Oshman Engineering Design Kitchen (OEDK) and guidance from its director, Maria Oden, and Rice lecturer Heather Bisesti, according to a news release from the university.

The team based the design on research from the Peter Tass Lab at Stanford University, which explored how randomized vibratory stimuli delivered to the fingertips could help rewire misfiring neurons in the brain—a key component of Parkinson’s disease.

Clinical trials from Stanford showed that coordinated reset stimulation from the vibrations helped patients regain motor control and reduced abnormal brain activity. The effects lasted even after users removed the vibrotactile gloves.

Casey and Kuye set out to replicate the breakthrough at a lower cost. Their prototype replaced the expensive motors used in previous designs with motors found in smartphones that create similar tiny vibrations. They then embedded the motors into each fingertip of a wireless glove.

“We wanted to take this breakthrough and make it accessible to people who would never be able to afford an expensive medical device,” Casey said in the release. “We set out to design a glove that delivers the same therapeutic vibrations but at a fraction of the cost.”

Rice’s design also targets the root of the neurological disruption and attempts to retrain the brain. An early prototype was given to a family friend who had an early onset of the disease. According to anecdotal data from Rice, after six months of regularly using the gloves, the user was able to walk unaided.

“We’re not claiming it’s a cure,” Kuye said in the release. “But if it can give people just a little more control, a little more freedom, that’s life-changing.”

Casey and Kuye are working to develop a commercial version of the glove priced at $250. They are taking preorders and hope to release 500 pairs of gloves this fall. They've also published an open-source instruction manual online for others who want to try to build their own glove at home. They have also formed a nonprofit and plan to use a sliding scale price model to help users manage the cost.

“This project exemplifies what we strive for at the OEDK — empowering students to translate cutting-edge research into real-world solutions,” Oden added in the release. “Emmie and Tomi have shown extraordinary initiative and empathy in developing a device that could bring meaningful relief to people living with Parkinson’s, no matter their resources.”