The new tower will be home of the Dan L Duncan Comprehensive Cancer Center. Photo courtesy of Baylor College of Medicine

Anew structure aimed at greatly expanding medical services and outpatient care to residents of Greater Houston recently topped off.

At an official ceremony attended by VIPs and industry names, Baylor St. Luke's Medical Center toasted the completion of the concrete structure pivotal in the construction of the O'Quinn Medical Tower at the McNair Campus.

This new 12-story O'Quinn Medical Tower at Baylor St. Luke's - McNair Campus will be the new clinical home for the Dan L Duncan Comprehensive Cancer Center, per a release. The center is nationally ranked for cancer care by U.S. News & World Report and is one of only three National Cancer Institute-designated comprehensive cancer centers in Texas. It earned that designation through Baylor College of Medicine.

Additionally, the O'Quinn Medical Tower is part of the expanding McNair Campus. This campus promises more than 400,000 square feet of space to support and provide personalized care to patients and families, including another hospital bed tower and ambulatory care center, press materials describe.

Those familiar with the area will recognize that the campus sits directly adjacent to the planned site of TMC3, a new 37-acre campus that will be located between Old Spanish Trail and Brays Bayou.

"The new O'Quinn Tower and its designation as the clinical home of Baylor's Dan L Duncan Comprehensive Cancer Center will be an important milestones in Baylor's mission," said Dr. Paul Klotman, president, CEO and executive dean of Baylor College of Medicine, in a release. "The McNair Campus is the hub of our clinical activity, and we look forward to the continued expansion."

------

This article originally ran on CultureMap.

Health care leaders joined a virtual panel to discuss the effects of COVID-19 and more. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

Overheard: Houston health care experts sound off on how tech and COVID-19 have affected the industry

eavesdropping in houston

There has been an undeniable paradigm shift in the health care industry due to COVID-19 as well as the growth of technology. A group of professionals sat down to discuss what in particular has changed for the industry as a whole as well as at local institutions.

At a panel for Venture Houston, a two-day conference put on by the HX Venture Fund on February 4th and 5th, a few health care professionals weighed in on all the changes to the industry for the startups, investors, corporations, and more who attended the virtual event. Here are some significant overheard moments from the virtual panel — Thinking Past a COVID World.

“For most of health care, this last year has been probably five years of rapid cycle re-innovation and movement forward — particularly in the digital realm.”

Marc Boom, president and CEO of Houston Methodist. From rapid adoption of telemedicine to developing a COVID-19 vaccine in less than a year, health care has seen rapid growth. However, there's fine tuning still needed, Boom continues.

"At the end of the day there's only so much we can do virtually," he adds.

“The most incredible thing was how the vaccines got developed so quickly.”

Chris Rizik, CEO of Renaissance Venture Partners. A large portion of the industry wasn't excited about RNA vaccines, but the COVID-19 vaccines might have changed some minds. It took 11 months to get it out into the world, but 10 of that was purely regulatory, he adds.

"One of the sustaining changes of the COVID-19 pandemic is I think RNA vaccines are here to stay."

​— Paul Klotman, executive dean of Baylor College of Medicine. Klotman adds that the vaccine's trials were so impressively quick because there were just so many COVID patients sick and eligible to enroll.

“I think one of the things the TMC institutions did really well was to decide really early on was to share data.”

Boom says, adding that the TMC represents around 70 percent of Houston's adults and around 90 percent of the city's pediatric patients. This opportunity for data is "one of the most robust sources of real-time data."

"Yes, you're going to compete clinically, but there's a lot of collaboration to be done especially during a pandemic," Boom says of the TMC's member organizations prioritizing collaboration with data sharing.

“Houston has done better than almost all major metropolitan areas because we have came together as a city and a community.”

Klotman says, adding that the vast patient base the TMC is key.

"There's a huge opportunity here for early biotech development," he says. "Because there are so many patients, there are huge opportunities to do new trials."

“The real challenge is for investors to be in tune to know what’s here to stay, and to invest around that."

Rizik says, adding that 2020 was the biggest year for health care investment with more money going into deals, rather than more deals occuring.

“We’re seeing a huge uptick in people interested in health professions, thanks to COVID.”

Boom says of the industry's workforce, which has usually been hard to recruit and grow.

“The medical school communities are all racing to change the way we teach and the kind of information we teach.”

Klotman says of the future of the workforce.

“Unlike most industries, technology is tended to be cumbersome in health care.

​— Boom says adding that new technology means added costs and slowed down processes that can't replace the human touch. Houston Methodist is looking for innovations that don't take health care professionals away from patients.

“If there’s anything this last year has shown us is that as fast as we thought we were going, we need to go faster. We’re excited to work with companies with great ideas.”

— Boom says of the future of tech in health care. "I think we're on a very transformational era in digital health right now — but there's a lot of work to be done still."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice, Houston Methodist developing soft 'sleep cap' for brain health research

Researchers and scientists at Rice University and Houston Methodist are developing a “sleep cap” that aims to protect the brain against dementia and other similar diseases by measuring and improving deep sleep.

The project is a collaboration between Rice University engineering professors Daniel Preston, Vanessa Sanchez and Behnaam Aazhang; and Houston Methodist neurologist Dr. Timea Hodics and Dr. Gavin Britz, director of the Houston Methodist Neurological Institute and chairman of the Department of Neurosurgery.

According to Rice, deep sleep is essential for clearing waste products from the brain and nightly “cleaning cycles” help remove toxic proteins. These toxic proteins, like amyloids, can accumulate during the day and are linked to Alzheimer’s disease and other neurological issues.

Aazhang, director of the Rice Neuroengineering Initiative, and his team are building a system that not only tracks the brain’s clearing process but can also stimulate it, improving natural mechanisms that protect against neurodegeneration.

Earlier proof-of-concept versions of the caps successfully demonstrated the promise of this approach; however, they were rigid and uncomfortable for sleep.

Preston and Sanchez will work to transform the design of the cap into a soft, lightweight, textile-based version to make sleep easier, while also allowing the caps to be customizable and tailored for each patient.

“One of the areas of expertise we have here at Rice is designing wearable devices from soft and flexible materials,” Preston, an assistant professor of mechanical engineering, said in a news release. “We’ve already shown this concept works in rigid device prototypes. Now we’re building a soft, breathable cap that people can comfortably wear while they sleep.”

Additionally, the research team is pursuing ways to adapt their technology to measure neuroinflammation and stimulate the brain’s natural plasticity. Neuroinflammation, or swelling in the brain, can be caused by injury, stroke, disease or lifestyle factors and is increasingly recognized as a driver of neurodegeneration, according to Rice.

“Our brain has an incredible ability to rewire itself,” Aazhang added in the release. “If we can harness that through technology, we can open new doors for treating not just dementia but also traumatic brain injury, stroke, Parkinson’s disease and more.”

The project represents Rice’s broader commitment to brain health research and its support for the Dementia Prevention Research Institute of Texas (DPRIT), which passed voter approval last week. The university also recently launched its Rice Brain Institute.

As part of the project, Houston Methodist will provide access to clinicians and patients for early trials, which include studies on patients who have suffered traumatic brain injury and stroke.

“We have entered an era in neuroscience that will result in transformational cures in diseases of the brain and spinal cord,” Britz said in the release. “DPRIT could make Texas the hub of these discoveries.”

Autonomous truck company with Houston routes goes public

on a roll

Kodiak Robotics, a provider of AI-powered autonomous vehicle technology, has gone public through a SPAC merger and has rebranded as Kodiak AI. The company operates trucking routes to and from Houston, which has served as a launchpad for the business.

Privately held Kodiak, founded in 2018, merged with a special purpose acquisition company — publicly held Ares Acquisition Corp. II — to form Kodiak AI, whose stock now trades on the Nasdaq market.

In September, Mountain View, California-based Kodiak and New York City-based Ares disclosed a $145 million PIPE (private investment in public equity) investment from institutional investors to support the business combo. Since announcing the SPAC deal, more than $220 million has been raised for the new Kodiak.

“We believe these additional investments underscore our investors’ confidence in the value proposition of Kodiak’s safe and commercially deployed autonomous technology,” Don Burnette, founder and CEO of Kodiak, said in a news release.

“We look forward to leading the advancement of the commercial trucking and public sector industries,” he added, “and delivering on the exciting value creation opportunities ahead to the benefit of customers and shareholders.”

Last December, Kodiak debuted a facility near George Bush Intercontinental/Houston Airport for loading and loading driverless trucks. Transportation and logistics company Ryder operates the “truckport” for Ryder.

The facility serves freight routes to and from Houston, Dallas and Oklahoma City. Kodiak’s trucks currently operate with or without drivers. Kodiak’s inaugural route launched in 2024 between Houston and Dallas.

One of the companies using Kodiak’s technology is Austin-based Atlas Energy Solutions, which owns and operates four driverless trucks equipped with Kodiak’s driver-as-a-service technology. The trucks pick up fracking sand from Atlas’ Dune Express, a 42-mile conveyor system that carries sand from Atlas’ mine to sites near customers’ oil wells in the Permian Basin.

Altogether, Atlas has ordered 100 trucks that will run on Kodiak’s autonomous technology in an effort to automate Atlas’ supply chain.

Rice University scientists invent new algorithm to fight Alzheimer's

A Seismic Breakthrough

A new breakthrough from researchers at Rice University could unlock the genetic components that determine several human diseases such as Parkinson's and Alzheimer's.

Alzheimer's disease affected 57 million people worldwide in 2021, and cases in the United States are expected to double in the next couple of decades. Despite its prevalence and widespread attention of the condition, the full mechanisms are still poorly understood. One hurdle has been identifying which brain cells are linked to the disease.

For years, it was thought that the cells most linked with Alzheimer's pathology via DNA evidence were microglia, infection-fighting cells in the brain. However, this did not match with actual studies of Alzheimer's patients' brains. It's the memory-making cells in the human brain that are implicated in the pathology.

To prove this link, researchers at Rice, alongside Boston University, developed a computational algorithm called “Single-cell Expression Integration System for Mapping Genetically Implicated Cell Types," or SEISMIC. It allows researchers to zero in on specific neurons linked to Alzheimer's, the first of its kind. Qiliang Lai, a Rice doctoral student and the lead author of a paper on the discovery published in Nature Communications, believes that this is an important step in the fight against Alzheimer's.

“As we age, some brain cells naturally slow down, but in dementia — a memory-loss disease — specific brain cells actually die and can’t be replaced,” said Lai. “The fact that it is memory-making brain cells dying and not infection-fighting brain cells raises this confusing puzzle where DNA evidence and brain evidence don’t match up.”

Studying Alzheimer's has been hampered by the limitations of computational analysis. Genome-wide association studies (GWAS) and single-cell RNA sequencing (scRNA-seq) map small differences in the DNA of Alzheimer's patients. The genetic signal in these studies would often over-emphasize the presence of infection fighting cells, essentially making the activity of those cells too "loud" statistically to identify other factors. Combined with greater specificity in brain regional activity, SEISMIC reduces the data chatter to grant a clearer picture of the genetic component of Alzheimer's.

“We built our SEISMIC algorithm to analyze genetic information and match it precisely to specific types of brain cells,” Lai said. “This enables us to create a more detailed picture of which cell types are affected by which genetic programs.”

Though the algorithm is not in and of itself likely to lead to a cure or treatment for Alzheimer's any time soon, the researchers say that SEISMIC is already performing significantly better than existing tools at identifying important disease-relevant cellular signals more clearly.

“We think this work could help reconcile some contradicting patterns in the data pertaining to Alzheimer’s research,” said Vicky Yao, assistant professor of computer science and a member of the Ken Kennedy Institute at Rice. “Beyond that, the method will likely be broadly valuable to help us better understand which cell types are relevant in different complex diseases.”

---

This article originally appeared on CultureMap.com.