When it comes to 5G, Houston is setting itself up as a leader within the United States. Getty Images

Last year, Houstonians Clayton and Emily Harris became the first commercial 5G customers. Now, a full year later, the Houston has a major seat at the table that's discussing the advancement of 5G technology.

At a forum on Tuesday, October 1, hosted by CTIA and the Center for Houston's Future, experts discussed Houston's role in the conversation about 5G. Here are some overheards from the morning event.

“We cannot take our leadership in 4G for granted as we transition to 5G.”

— Senator Ted Cruz. Cruz's keynote address warns of the United States resting on its laurels in the race to 5G. While the country had the edge on foreign competition for 4G, that doesn't mean 5G will have the same result, he says. In fact, Cruz cites multiple studies that show China and South Korea lead the race in 5G. Deloitte's research found that China has outspent the U.S. by $24 billion and has built 350,000 new sites, while the U.S. has built fewer than 30,000. The study also showed China is prepared to invest $400 billion. This information aside, Cruz tells the crowd that America has the ability to win the race to 5G.

“I think it’s a wonderful story to see how Texas has been leading the way.” 

— Brendan Carr, FCC commissioner. Carr references the Harris family, as well as other Texas cities he's visited that have been working hard to advance 5G. For Carr, expanding and implementing 5G is a huge opportunity for job creation. "The U.S. isn't the only country in the world that wants these jobs," he says to the crowd. "They're not the only country that wants to see the half a trillion dollars in economic growth that's going to come from this next-generation technology."

“I’ll admit, I’m an optimist, but there are significant challenges to making this 5G future a reality.”

— Jesse Bounds, director of innovation for the city of Houston. Bounds cited a few obstacles to overcome. There's a need for massive investment in infrastructure to blanket cities in 5G, and telecom companies are expected to spend $8 billion over the next five years to build this infrastructure, and cities too will need to invest in smart city technology. Consumers will need to pay more for data, and US consumers pay some of the highest rates in the world already. Not to mention the fact that a third of Americans don't have access to home internet. "As we build the infrastructure of the future, we must do so in a way that closes the digital divide so that those Americans can enjoy the same level of opportunity and prosperity that we do," Bounds says.

"Houston’s 5G network performance is 17 times better than the 4G. That’s today, in the very early days of 5G.”

— Paul Challoner, vice president of network product solutions at Ericsson. Challoner tells the crowd that of course this affects speed of data transferring and that is a huge pro for the technology, but there are other important perks for 5G advancement. The tech also affects device density, meaning that, a very large city like Houston, might have issues in dense areas. 5G also improves connectivity in crucial situations, like in the case of a surgeon using a device during surgery. Lastly, Challoner mentioned 5G is the most advanced technology when it comes to cybersecurity.

"One area that I’m most excited about is all the things that we don't talk about. All the applications that haven't yet been imagined, that are being dreamt up by software developers in their dorm rooms."

— Mishka Dehghan, vice president of 5G development at Sprint. Dehghan points out that 10 years ago, no one could have imagined ride sharing, now that is a huge industry with developing technology thanks to mobile data usage. With with the onset of 5G, she says she can't wait to see what technology is created in the next 10 years.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston organizations launch collaborative center to boost cancer outcomes

new to HOU

Rice University's new Synthesis X Center officially launched last month to bring together experts in cancer care and chemistry.

The center was born out of what started about seven years ago as informal meetings between Rice chemist Han Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine. The level of collaboration between the two teams has grown significantly over the years, and monthly meetings now draw about 100 participants from across disciplines, fields and Houston-based organizations, according to a statement from Rice.

Researchers at the new SynthX Center will aim to turn fundamental research into clinical applications and make precision adjustments to drug properties and molecules. It will focus on improving cancer outcomes by looking at an array of factors, including prevention and detection, immunotherapies, the use of artificial intelligence to speed drug discovery and development, and several other topics.

"At Rice, we are strong on the fundamental side of research in organic chemistry, chemical biology, bioengineering and nanomaterials,” Xiao says in the statement. “Starting at the laboratory bench, we can synthesize therapeutic molecules and proteins with atom-level precision, offering immense potential for real-world applications at the bedside ... But the clinicians and fundamental researchers don’t have a lot of time to talk and to exchange ideas, so SynthX wants to serve as the bridge and help make these connections.”

SynthX plans to issue its first merit-based seed grants to teams with representatives from Baylor and Rice this month.

With this recognition from Rice, the teams from Xiao's lab and the TMC will also be able to expand and formalize their programs. They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

“I am confident that the SynthX Center will be a great resource for both students and faculty who seek to translate discoveries from fundamental chemical research into medical applications that improve people’s lives,” Thomas Killian, dean of the Wiess School of Natural Sciences, says in the release.

Rice announced that it had invested in four other research centers along with SynthX last month. The other centers include the Center for Coastal Futures and Adaptive Resilience, the Center for Environmental Studies, the Center for Latin American and Latinx Studies and the Rice Center for Nanoscale Imaging Sciences.

Earlier this year, Rice also announced its first-ever recipients of its One Small Step Grant program, funded by its Office of Innovation. The program will provide funding to faculty working on "promising projects with commercial potential," according to the website.

Houston physicist scores $15.5M grant for high-energy nuclear physics research

FUTURE OF PHYSICS

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

The Rice team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas. Photo via Rice.edu

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

------

This article originally ran on EnergyCapital.