This week's roundup of Houston innovators includes Divyaditya Shrivastava of Paladin, Veronica Breckenridge of First Bight Ventures, Sunil Sheth of UTHealth Houston, plus around 50 Houston Innovation Awards finalists. Photos courtesy

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a drone tech startup founder, biotech investor, and health care innovator.

Divyaditya Shrivastava, co-founder of Paladin

Paladin’s AI-enhanced autonomous drones help public safety agencies, such as police and fire departments, respond to 911 calls. Photo via LinkedIn

Houston-based Paladin, whose remotely controlled drones help first responders react quickly to emergencies, has collected $5.2 million in seed funding.

Gradient, a seed fund that backs AI-oriented startups, led the round. Also participating were Toyota Ventures, the early-stage VC arm of Japanese automaker Toyota; venture capital firm Khosla Ventures; and VC fund 1517. The company was co-founded by Divyaditya Shrivastava and Trevor Pennypacker.

Among the agencies that have tried out Paladin’s technology is the Houston area’s Memorial Villages Police Department. The department participated in a three-month Paladin pilot project in 2019. Read more.

Veronica Breckenridge (née Wu), founder of First Bight Ventures

Veronica Breckenridge, founder of First Bight VenturesInvestor advocates now is the time to position Houston as a leading biomanufacturing hub

Veronica Breckenridge is the founder of First Bight Ventures, which just celebrated three portfolio companies. Photo courtesy

Three portfolio companies of Houston venture capital firm First Bight Ventures have received a combined $5.25 million from the U.S. Defense Department’s Distributed Bioindustrial Manufacturing Program.

“The allocation of funds by the federal government will be critical in helping grow biomanufacturing capacity,” Veronica Breckenridge (née Wu), founder of First Bight, says in a news release. “We are very proud to represent three dynamic companies that are awardees of this competitive and widely praised program.” Read more.

Sunil Sheth, associate professor in the Department of Neurology at McGovern Medical School at UTHealth Houston

UTHealth Houston has secured millions in grant funding — plus has reached a new milestone for one of its projects. Photo via utsystem.edu

UTHealth recently received a grant that will improve the odds for patients who have had a stroke with the successful re-opening of a blocked vessel through endovascular surgery. The $2.5 million grant from the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, will fund a five-year study that will include the creation of a machine-learning program that will be able to predict which stroke patients with large blood vessel blockages will benefit most from endovascular therapy.

The investigators will form a database of imaging and outcomes of patients whose blockages were successfully opened, called reperfusion, from three U.S. hospitals. This will allow them to identify clinical and imaging-based predictors of damage in the brain after reperfusion. From there, the deep-learning model will help clinicians to know which patients might go against the tenet that the sooner you treat a patient, the better.

“This is shaking our core of deciding who we treat, and when, and how, but also, how we are evaluating them? Our current methods of determining benefit with imaging are not good enough,” says principal investigator and associate professor in the Department of Neurology at McGovern Medical School at UTHealth Houston, Sunil Sheth. Read more.

Top innovators: 2024 Houston Innovation Awards finalists revealed

Here's what Houston startups and innovators will be honored at the Houston Innovation Awards on November 14. Graphic via Gow Media

After nearly 300 nominations, InnovationMap and its group of judges are ready to reveal the finalists for this year's Houston Innovation Awards.

Taking place on Thursday, November 14, the Houston Innovation Awards celebrates all of Houston's innovation ecosystem — startups, entrepreneurs, investors, mentors, and more. Over 50 finalists will be recognized in particular for their achievements across 13 categories, which includes the 2024 Trailblazer Legacy Awards that were announced earlier this month.

Click here to see the 2024 Houston Innovation Awards finalists.

Paladin’s AI-enhanced autonomous drones help public safety agencies, such as police and fire departments, respond to 911 calls. Photo via paladindrones.io

Houston startup designing emergency response drones lands $5.2M in seed funding

cha-ching

Houston-based Paladin, whose remotely controlled drones help first responders react quickly to emergencies, has collected $5.2 million in seed funding.

Gradient, a seed fund that backs AI-oriented startups, led the round. Also participating were Toyota Ventures, the early-stage VC arm of Japanese automaker Toyota; venture capital firm Khosla Ventures; and VC fund 1517.

“We believe Paladin will drive meaningful change in public safety and redefine how communities are served,” Gradient said in an announcement about the seed round.

In 2019, Paladin received $1.3 million in seed funding from Khosla Ventures and Gmail creator Paul Buchheit, a group partner at Y Combinator. In 2018, the year it was co-founded by Divyaditya Shrivastava and Trevor Pennypacker, Paladin graduated from Y Combinator’s three-month boot camp.

Paladin’s AI-enhanced autonomous drones help public safety agencies, such as police and fire departments, respond to 911 calls. These drones provide aerial views of emergency scenes in an effort to decrease response times, improve “situational awareness,” and save lives, according to a Gradient blog post.

Among the agencies that have tried out Paladin’s technology is the Houston area’s Memorial Villages Police Department. The department participated in a three-month Paladin pilot project in 2019.

"(This is) one of the first departments in the country to be testing this technology," Shrivastava told InnovationMap in 2019. "We're very limited in the area that we cover, and that's just because we're taking baby steps and going as carefully and deliberately as possible."

Gradient says more than 12,000 drone missions have been performed using Paladin’s hardware and software platform. Agencies that have adopted the platform report average response times under 90 seconds. Furthermore, the technology has allowed them to resolve nearly one-third of 911 calls without dispatching first responders.

“Paladin keeps innovating, recently launching Payload Drop, a groundbreaking feature that enables drones to deliver lifesaving equipment — such as Narcan, life vests, and AEDs — directly to emergency scenes,” says Gradient.

On its website, Paladin says it envisions autonomous drones responding to every 911 call in the U.S. by 2027.

“The information is paramount, the technology exists and is rapidly improving, and the need is there. We want to help,” Paladin proclaims.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.