For years, Squid Compression has helped ease the pain of patients in doctor's offices. Now, anyone can get the treatment on the go. Photo via squidgo.com

Many of the estimated 50 million Americans who suffer from chronic pain turn to drugs — including heavily abused opioids — to relieve their symptoms. Houston-based startup Portable Therapeutix LLC's drug-free solution to pain management seeks to put a dent in the market for prescription painkillers.

In 2018, Houston-based Portable Therapeutix introduced Squid Go, a portable device that's designed to ease the pain and swelling of sore joints and muscles. It's a follow-up to the company's Squid Compression, a pain management device launched in 2013 for patients at rehabilitation centers, hospitals, doctor's offices, and the like.

Squid Go enables consumers to apply two approaches — cold therapy and compression therapy — to relieving joint pain and swelling caused by arthritis, bouncing back from athletic activities, or recovering from an injury or surgery involving muscles and joints. Variations of the device can treat ankle, back, leg, knee, shoulder, or wrist pain.

To reap the benefits of Squid Go, a consumer uses the device for just 15 minutes. Squid Go — which combines a cold gel pack with proprietary compression technology — features special air pockets that inflate and deflate, gently massaging the body part needing treatment. That massaging boosts circulation and reduces swelling.

"Increased circulation brings more nutrient- and oxygen-rich blood to the area, promoting recovery," says Sam Stolbun, co-founder of Portable Therapeutix. "Meanwhile, [the] gentle compression also drives the pain-relieving cold from the gel pack deeper into the tissues to alleviate soreness and discomfort."

The coldness of the gel pack fights inflammation.

Stolbun says someone can take the lightweight, portable Squid Go device to the office, to the gym or anywhere else for on-the-go pain relief. It even can be used without the cold gel pack for compression-only therapy to improve circulation and decrease swelling. The Squid Go pump delivers about 15 treatments before it needs to be recharged.

Squid Compression received clearance from the U.S. Food and Drug Administration as a prescription-only device in 2013 and gained over-the-counter status in 2014. The consumer version, Squid Go, employs the same technology and operates the same way as Squid Compression, so a second FDA stamp of approval wasn't required.

Pricing for the heavy-duty Squid Compression system starts at $700. The consumer-friendly Squid Go system goes for $300 or $350, depending on its purpose. Users can buy extra wraps and gel packs to supplement the system.

Stolbun says he and co-founder Shai Schubert developed the Squid devices after realizing that existing pain-fighting cold packs provided only superficial relief, while water-based treatments were inconvenient and offered no compression advantages. Still other cold and compression therapies on the market are expensive and generally aren't covered by health insurance, he says.

Stolbun says that "it became apparent that a reasonably priced, well-made, portable, and effective pain relief and recovery device would meet a need for a broad range of consumers — from athletes to seniors."

Stolbun, a sports enthusiast and bakery mogul, and Schubert, a scientist and entrepreneur, established Portable Therapeutix in 2011.

The company's debut product, Squid Compression, still enjoys success, but Stolbun says the company has shifted its focus to Squid Go. Portable Therapeutix plans to pump up sales for Squid Go via its online presence, he says, as well as through physical therapists, sports trainers and other professionals who've used Squid Compression but want to offer the less pricey Squid Go model to their clients for in-home treatment.

Portable Therapeutix is backed by private investors; the amount of funding it has received isn't available. The company doesn't release revenue and profit figures.

Today, the company employs just one person in Houston but will add workers as its distribution pipeline expands, Stolbun says. Sales, marketing, and customer service representatives are scattered around the country. Stolbun, the CEO, is based in Houston, while Schubert, the chief technical officer, is based in Boston.

Portable Therapeutix relies, in part, on word-of-mouth praise to promote Squid Go. Among those hailing the device is Lee Ward of Houston, who describes himself as a competitive tennis player.

On the Squid Go website, Ward explains that he'd been suffering from progressively worsening tendonitis in his knees for a couple of years.

"I tried a number of remedies, including ice and gel packs, immediately following my tennis workout, but both remedies were ineffective and difficult to use," Ward says in his online testimonial.

He then discovered Squid Go and became a fan.

"The best thing about [Squid Go] is its ease of use. It provides a quick, effective treatment that makes it ideal for daily use by both the serious and recreational athlete," Ward says.

Smart tech

Courtesy of Squid Go

Squid Go combines a cold gel pack with proprietary compression technology and features special air pockets that inflate and deflate, gently massaging the body part needing treatment.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”

Oxy's $1.3B Texas carbon capture facility on track to​ launch this year

gearing up

Houston-based Occidental Petroleum is gearing up to start removing CO2 from the atmosphere at its $1.3 billion direct air capture (DAC) project in the Midland-Odessa area.

Vicki Hollub, president and CEO of Occidental, said during the company’s recent second-quarter earnings call that the Stratos project — being developed by carbon capture and sequestration subsidiary 1PointFive — is on track to begin capturing CO2 later this year.

“We are immensely proud of the achievements to date and the exceptional record of safety performance as we advance towards commercial startup,” Hollub said of Stratos.

Carbon dioxide captured by Stratos will be stored underground or be used for enhanced oil recovery.

Oxy says Stratos is the world’s largest DAC facility. It’s designed to pull 500,000 metric tons of carbon dioxide from the air and either store it underground or use it for enhanced oil recovery. Enhanced oil recovery extracts oil from unproductive reservoirs.

Most of the carbon credits that’ll be generated by Stratos through 2030 have already been sold to organizations such as Airbus, AT&T, All Nippon Airways, Amazon, the Houston Astros, the Houston Texans, JPMorgan, Microsoft, Palo Alto Networks and TD Bank.

The infrastructure business of investment manager BlackRock has pumped $550 million into Stratos through a joint venture with 1PointFive.

As it gears up to kick off operations at Stratos, Occidental is also in talks with XRG, the energy investment arm of the United Arab Emirates-owned Abu Dhabi National Oil Co., to form a joint venture for the development of a DAC facility in South Texas. Occidental has been awarded up to $650 million from the U.S. Department of Energy to build the South Texas DAC hub.

The South Texas project, to be located on the storied King Ranch, will be close to industrial facilities and energy infrastructure along the Gulf Coast. Initially, the roughly 165-square-mile site is expected to capture 500,000 metric tons of carbon dioxide per year, with the potential to store up to 3 billion metric tons of CO2 per year.

“We believe that carbon capture and DAC, in particular, will be instrumental in shaping the future energy landscape,” Hollub said.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.