Houstonian Joe Schurman's latest venture PhenomAInon is aimed at tapping into AI and data analytics for for space domain awareness and threat detection. Photo via Getty Images

As artificial intelligence continues to expand its sphere of influence, Spring-based expert Joe Schurman is looking to take this technology to an out-of-this-world space.

With his background includes working with advising defense and aerospace organizations like NASA, Schurman's latest venture PhenomAInon is perfectly aligned with what he’s been working towards since 2019. The company aims to be a multi-tiered subscription service and application that will be the world’s first cloud native data and AI platform for phenomenon-based data analysis that can analyze data from any source for space domain awareness and threat detection, according to Schurman.

The platform aims to provide end-to-end data and AI analysis, publish insights, build community, and provide cloud, data, and software consulting. PhenomAInon deploys data and AI services alongside modern data and AI engineering, per the website, to surface insights to explorers, researchers, organizations, publications, and communities through advanced data and AI analysis. Schurman has worked with the U.S. government's task force for unidentified anomalous phenomenon — any perceived aerial phenomenon that cannot be immediately identified or explained — known as UAPTF. The tool will run sensitive information and then get back custom video analysis. The public version of the tool will give the public the option to view videos and cases, and form their own analysis.

“We are working together with multiple teams both public and private to continue to curate the data sets, clear documents for public review, and provide advanced analytics and AI capabilities never seen before to the public,” Schurman tells InnovationMap. “From a data and analytics perspective, we are applying machine learning and advanced analytics to find correlations and anomalies in the incident reports across multiple data sets.

"Some of these are public, some are private, and some we are clearing for public review," he continues. "The analytics will go far beyond incident reporting and showcase heat maps, correlative incident maps to key private and public sector facilities, and trends analysis never reported — e.g. incident reporting correlated with time, weather, FAA, and drone flight data, etc. We also have a new content analysis platform where users will be able to eventually run their own AI and ML analysis on their own videos.”

Schurman was first able to show this to the world in 2019, when as an adviser for To The Stars Academy of Arts and Science, or TTSA. He also appeared on History Channel’s “Unidentified: Inside America's UFO Investigation” to show the Pentagon’s former Advanced Aerospace Threat Identification Program head and TTSA Director of Special Programs Luis Elizondo how the AI platform could be helpful in tracking data related to Unidentified Aerial Phenomena.

Now, PhenomAInon's app is a work-in-progress. While it soft launched in May of 2022, Schurman says they have several data sets that are awaiting clearing from the U.S. government, as well as the content analysis tool in development to launch possibly by the summer. Schurman also hopes they will curate the largest library of incident videos, images, and audio recordings.

The subject of UAP continues to attract new discussions from government officials and industry professions across aerospace, academia, and more. In Houston, Rice University's Woodson Research Center and its humanities department host one of the largest archives of UAP and paranormal data, notes, and research that include documents from CIA programs on remote viewing.

Schurman says he's looking to provide even more data and information in this space.

“This phenomenon, it’s implications to multiple aspects of our lives and possible security threats, all come down to a data problem and the organizations that have been in place to-date just have not had the level of cloud, data and AI engineering capabilities we take for granted and have access to in the private sector,” says Schurman. “My goal is to bring this all together, starting with PhenomAInon.”

Eric Ingram and Sergio Gallucci of SCOUT are focused on creating data-driven solutions to space technology management to save companies billions and prevent space debris. Photos courtesy of SCOUT

Tech startup lands in Houston to help space support services take off

space tech

A Virginia-based space company startup focusing on developing small and inexpensive satellites is making an out-of-this-world entrance in the Houston commercial innovation space.

SCOUT has been selected as part of the 2020 MassChallange's Texas in Houston cohort, a zero-equity startup accelerator, in the commercial space track and is planning a demonstration mission with the Johnson Space Center in 2021.

The startup, founded in 2019 by Eric Ingram and joined shortly after by Sergio Gallucci. Both have years of experience in innovative research and development, leading teams across academia, government, and industry. Their data will help manufacturers and operators extend satellite lifetimes, avoid failing satellites, reducing up to a billion dollars in losses.

"If we want further operate in space and grow our space presence overall," Eric Ingram, CEO-and-founder tells InnovationMap. "We need to have a safe environment to expand that presence so any time you have unchecked failures and space debris is a problem. We want to help take some of the riskiness out of space operations by providing data that doesn't already exist."

SCOUT provides a wide array of new products based on data to produce small and inexpensive satellites to perform in-space inspections of large and expensive satellites. Their data and spaceflight autonomy software helps spacecraft detect, identify, and refine models for observed objects to gather information and enable autonomous operations.

The space startup's observation and comprehension capabilities creates data products for customers, such as Spacecraft Sensor Suites and Satellite Inspections. The former is a sensor suite under current development to enable a new way to monitor satellites in space while the latter consists of their small satellites that can enable on-demand and on-site inspections for space assets.

This, according to Ingram, is changing the paradigm of operational risk in space.

"If we are able to better understand how these satellites age over time and diagnose problems before they become catastrophic failures," says Ingram "We can prevent space debris from even happening. The more safety and responsibility in space, the better it is for everyone to increase their technology and investment in what is a very rapidly growing industry."

Lost satellites tend to happen often, resulting in about $300 million lost in hardware and around $40 million annual revenue gone. Spacecrafts in outer space can be part of many unpredictable interactions that can be difficult to trace including solar activity, thermal, mechanical wear, and outgassing.

SCOUT will focus the rest of the year in growing their company, despite the setbacks caused by the coronavirus. Their priority is to meet their fundraising and technical milestones while engaging in strategic partnerships with satellite industry players.

"The space industry is growing and is becoming a more realistic and viable avenue for business growth and investment," says Ingram. "Houston is a diverse city with innovation at every front and the effort that NASA is going through to aid the commercial space industry, combined with the startup accelerators that there is a lot of adjacent opportunities and overlap in capabilities."

The NASA-backed Translational Research Institute for Space Health is innovating the future of life in space. Libby Neder Photography

Houston-based organization tasked by NASA to take risks and innovate solutions in space health

HOUSTON INNOVATORS PODCAST EPISODE 14

For Dorit Donoviel, innovation means risk — and there's not a lot that's riskier than traveling to and living in outer space. As director of Houston-based TRISH — the Translational Research Institute for Space Health — Donoviel is tasked by NASA to take some risks in order to innovate.

"Everyone tosses the word 'innovation' around, but that means, to us, taking risks in science. Health care, in particular, is very risk averse, but the space industry is taking risks every single day when they put people in a rocket and hurl them into space," Donoviel says on this week's episode of the Houston Innovators Podcast. "If we're going to mars, for example, we are going to put people at risk.

"For us to take risks in order to reduce risk is a really amazing opportunity."

TRISH works hand in hand with NASA's Human Research Program to identify the program's biggest concerns, and then tap into professors, researchers, and scientists from Baylor College of Medicine, California Institute of Technology, the Massachusetts Institute for Technology, and other partners in order to innovate solutions.

Some of the issues TRISH is working to provide solutions for range from protecting from radiation exposure on the moon and mars to personal health care — astronauts have to be a doctor to themselves when they are on the space station.

"That's a totally new model for health care, so we have to solve all those problems and invest in them," Donoviel says.

In a lot of ways, TRISH connects the dots of modern space research, explains Donoviel. The organization taps into its researcher network, as well as into startups and companies with innovative technologies, in order to deliver the best space innovations to NASA.

Donoviel goes into more details on how TRISH interacts with entrepreneurs as well as what new technologies the organization has seen success with in the episode. Stream the podcast below, and subscribe wherever you get your podcasts.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”