Houstonian Joe Schurman's latest venture PhenomAInon is aimed at tapping into AI and data analytics for for space domain awareness and threat detection. Photo via Getty Images

As artificial intelligence continues to expand its sphere of influence, Spring-based expert Joe Schurman is looking to take this technology to an out-of-this-world space.

With his background includes working with advising defense and aerospace organizations like NASA, Schurman's latest venture PhenomAInon is perfectly aligned with what he’s been working towards since 2019. The company aims to be a multi-tiered subscription service and application that will be the world’s first cloud native data and AI platform for phenomenon-based data analysis that can analyze data from any source for space domain awareness and threat detection, according to Schurman.

The platform aims to provide end-to-end data and AI analysis, publish insights, build community, and provide cloud, data, and software consulting. PhenomAInon deploys data and AI services alongside modern data and AI engineering, per the website, to surface insights to explorers, researchers, organizations, publications, and communities through advanced data and AI analysis. Schurman has worked with the U.S. government's task force for unidentified anomalous phenomenon — any perceived aerial phenomenon that cannot be immediately identified or explained — known as UAPTF. The tool will run sensitive information and then get back custom video analysis. The public version of the tool will give the public the option to view videos and cases, and form their own analysis.

“We are working together with multiple teams both public and private to continue to curate the data sets, clear documents for public review, and provide advanced analytics and AI capabilities never seen before to the public,” Schurman tells InnovationMap. “From a data and analytics perspective, we are applying machine learning and advanced analytics to find correlations and anomalies in the incident reports across multiple data sets.

"Some of these are public, some are private, and some we are clearing for public review," he continues. "The analytics will go far beyond incident reporting and showcase heat maps, correlative incident maps to key private and public sector facilities, and trends analysis never reported — e.g. incident reporting correlated with time, weather, FAA, and drone flight data, etc. We also have a new content analysis platform where users will be able to eventually run their own AI and ML analysis on their own videos.”

Schurman was first able to show this to the world in 2019, when as an adviser for To The Stars Academy of Arts and Science, or TTSA. He also appeared on History Channel’s “Unidentified: Inside America's UFO Investigation” to show the Pentagon’s former Advanced Aerospace Threat Identification Program head and TTSA Director of Special Programs Luis Elizondo how the AI platform could be helpful in tracking data related to Unidentified Aerial Phenomena.

Now, PhenomAInon's app is a work-in-progress. While it soft launched in May of 2022, Schurman says they have several data sets that are awaiting clearing from the U.S. government, as well as the content analysis tool in development to launch possibly by the summer. Schurman also hopes they will curate the largest library of incident videos, images, and audio recordings.

The subject of UAP continues to attract new discussions from government officials and industry professions across aerospace, academia, and more. In Houston, Rice University's Woodson Research Center and its humanities department host one of the largest archives of UAP and paranormal data, notes, and research that include documents from CIA programs on remote viewing.

Schurman says he's looking to provide even more data and information in this space.

“This phenomenon, it’s implications to multiple aspects of our lives and possible security threats, all come down to a data problem and the organizations that have been in place to-date just have not had the level of cloud, data and AI engineering capabilities we take for granted and have access to in the private sector,” says Schurman. “My goal is to bring this all together, starting with PhenomAInon.”

Eric Ingram and Sergio Gallucci of SCOUT are focused on creating data-driven solutions to space technology management to save companies billions and prevent space debris. Photos courtesy of SCOUT

Tech startup lands in Houston to help space support services take off

space tech

A Virginia-based space company startup focusing on developing small and inexpensive satellites is making an out-of-this-world entrance in the Houston commercial innovation space.

SCOUT has been selected as part of the 2020 MassChallange's Texas in Houston cohort, a zero-equity startup accelerator, in the commercial space track and is planning a demonstration mission with the Johnson Space Center in 2021.

The startup, founded in 2019 by Eric Ingram and joined shortly after by Sergio Gallucci. Both have years of experience in innovative research and development, leading teams across academia, government, and industry. Their data will help manufacturers and operators extend satellite lifetimes, avoid failing satellites, reducing up to a billion dollars in losses.

"If we want further operate in space and grow our space presence overall," Eric Ingram, CEO-and-founder tells InnovationMap. "We need to have a safe environment to expand that presence so any time you have unchecked failures and space debris is a problem. We want to help take some of the riskiness out of space operations by providing data that doesn't already exist."

SCOUT provides a wide array of new products based on data to produce small and inexpensive satellites to perform in-space inspections of large and expensive satellites. Their data and spaceflight autonomy software helps spacecraft detect, identify, and refine models for observed objects to gather information and enable autonomous operations.

The space startup's observation and comprehension capabilities creates data products for customers, such as Spacecraft Sensor Suites and Satellite Inspections. The former is a sensor suite under current development to enable a new way to monitor satellites in space while the latter consists of their small satellites that can enable on-demand and on-site inspections for space assets.

This, according to Ingram, is changing the paradigm of operational risk in space.

"If we are able to better understand how these satellites age over time and diagnose problems before they become catastrophic failures," says Ingram "We can prevent space debris from even happening. The more safety and responsibility in space, the better it is for everyone to increase their technology and investment in what is a very rapidly growing industry."

Lost satellites tend to happen often, resulting in about $300 million lost in hardware and around $40 million annual revenue gone. Spacecrafts in outer space can be part of many unpredictable interactions that can be difficult to trace including solar activity, thermal, mechanical wear, and outgassing.

SCOUT will focus the rest of the year in growing their company, despite the setbacks caused by the coronavirus. Their priority is to meet their fundraising and technical milestones while engaging in strategic partnerships with satellite industry players.

"The space industry is growing and is becoming a more realistic and viable avenue for business growth and investment," says Ingram. "Houston is a diverse city with innovation at every front and the effort that NASA is going through to aid the commercial space industry, combined with the startup accelerators that there is a lot of adjacent opportunities and overlap in capabilities."

The NASA-backed Translational Research Institute for Space Health is innovating the future of life in space. Libby Neder Photography

Houston-based organization tasked by NASA to take risks and innovate solutions in space health

HOUSTON INNOVATORS PODCAST EPISODE 14

For Dorit Donoviel, innovation means risk — and there's not a lot that's riskier than traveling to and living in outer space. As director of Houston-based TRISH — the Translational Research Institute for Space Health — Donoviel is tasked by NASA to take some risks in order to innovate.

"Everyone tosses the word 'innovation' around, but that means, to us, taking risks in science. Health care, in particular, is very risk averse, but the space industry is taking risks every single day when they put people in a rocket and hurl them into space," Donoviel says on this week's episode of the Houston Innovators Podcast. "If we're going to mars, for example, we are going to put people at risk.

"For us to take risks in order to reduce risk is a really amazing opportunity."

TRISH works hand in hand with NASA's Human Research Program to identify the program's biggest concerns, and then tap into professors, researchers, and scientists from Baylor College of Medicine, California Institute of Technology, the Massachusetts Institute for Technology, and other partners in order to innovate solutions.

Some of the issues TRISH is working to provide solutions for range from protecting from radiation exposure on the moon and mars to personal health care — astronauts have to be a doctor to themselves when they are on the space station.

"That's a totally new model for health care, so we have to solve all those problems and invest in them," Donoviel says.

In a lot of ways, TRISH connects the dots of modern space research, explains Donoviel. The organization taps into its researcher network, as well as into startups and companies with innovative technologies, in order to deliver the best space innovations to NASA.

Donoviel goes into more details on how TRISH interacts with entrepreneurs as well as what new technologies the organization has seen success with in the episode. Stream the podcast below, and subscribe wherever you get your podcasts.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."

UH study uncovers sustainable farming methods for hemp production

growth plan

A new University of Houston study of hemp microbes can potentially assist scientists in creating special mixtures of microbes to make hemp plants produce more CBD or have better-quality fibers.

The study, led by Abdul Latif Khan, an assistant professor of biotechnology at the Cullen College of Engineering Technology Division, was published in the journal Scientific Reports from the Nature Publishing Group. The team also included Venkatesh Balan, UH associate professor of biotechnology at the Cullen College of Engineering Technology Division; Aruna Weerasooriya, professor of medicinal plants at Prairie View A&M University; and Ram Ray, professor of agronomy at Prairie View A&M University.

The study examined microbiomes living in and around the roots (rhizosphere) and on the leaves (phyllosphere) of four types of hemp plants. The team at UH compared how these microorganisms differ between hemp grown for fiber and hemp grown for CBD production.

“In hemp, the microbiome is important in terms of optimizing the production of CBD and enhancing the quality of fiber,” Khan said in a news release. “This work explains how different genotypes of hemp harbor microbial communities to live inside and contribute to such processes. We showed how different types of hemp plants have their own special groups of tiny living microbes that help the plants grow and stay healthy.”

The study indicates that hemp cultivation can be improved by better understanding these distinct microbial communities, which impact growth, nutrient absorption, stress resilience, synthesis and more. This could help decrease the need for chemical inputs and allow growers to use more sustainable agricultural practices.

“Understanding these microorganisms can also lead to more sustainable farming methods, using nature to boost plant growth instead of relying heavily on chemicals,” Ahmad, the paper’s first author and doctoral student of Khan’s, said the news release.

Other findings in the study included higher fungal diversity in leaves and stems, higher bacterial diversity in roots and soil, and differing microbiome diversity. According to UH, CBD-rich varieties are currently in high demand for pharmaceutical products, and fiber-rich varieties are used in industrial applications like textiles.