One project involves the innovative recycling of wind turbines into seawall and coastal habitats. Courtesy rendering

Two University of Houston science projects have been selected as finalists for the Gulf Futures Challenge, which will award a total of $50 million to develop ideas that help benefit the Gulf Coast.

Sponsored by the National Academies of Science, Engineering and Medicine’s Gulf Coast Research Program and Lever for Change, the competition is designed to spark innovation around problems in the Gulf Coast, such as rising sea levels, pollution, energy security, and community resiliency. The two UH projects beat out 162 entries from organizations based in Alabama, Florida, Louisiana, Mississippi, and Texas.

“Being named a finalist for this highly competitive grant underscores the University of Houston’s role as a leading research institution committed to addressing the most pressing challenges facing our region,” said Claudia Neuhauser, vice president for research at UH.

“This opportunity affirms the strength of our faculty and researchers and highlights UH’s capacity to deliver innovative solutions that will ensure the long-term stability and resilience of the Gulf Coast.”

One project, spearheaded by the UH Repurposing Offshore Infrastructure for Continued Energy (ROICE) program, is studying ways to use decommissioned oil rig platforms in the Gulf of Mexico as both clean energy hydrogen power generators as well a marine habitats. There are currently thousands of such platforms in the Gulf.

The other project involves the innovative recycling of wind turbines into seawall and coastal habitats. Broken and abandoned wind turbine blades have traditionally been thought to be non-recyclable and end up taking up incredible space in landfills. Headed by a partnership between UH, Tulane University, the University of Texas Health Science Center at Houston, the city of Galveston and other organizations, this initiative could vastly reduce the waste associated with wind farm technology.

wind turbine recycled for Gulf Coast seawall. Wind turbines would be repurposed into seawalls and more. Courtesy rendering

"Coastal communities face escalating threats from climate change — land erosion, structural corrosion, property damage and negative health impacts,” said Gangbing Song, Moores Professor of Mechanical and Aerospace Engineering at UH and the lead investigator for both projects.

“Leveraging the durability and anti-corrosive properties of these of decommissioned wind turbine blades, we will build coastal structures, improve green spaces and advance the resilience and health of Gulf Coast communities through integrated research, education and outreach.”

The two projects have received a development grant of $300,000 as a prize for making it to the finals. When the winner are announced in early 2026, two of the projects will net $20 million each to bring their vision to life, with the rest earning a consolation prize of $875,000, in additional project support.

In the event that UH doesn't grab the grand prize, the school's scientific innovation will earn a guaranteed $1.75 million for the betterment of the Gulf Coast.

---

This article originally appeared on CultureMap.com.

Envana Software Solutions' tech allows an oil and gas company to see a full inventory of greenhouse gases. Photo via Getty Images

Houston joint venture secures $5.2M for AI-powered methane tracking tech

Fresh Funds

Houston-based Envana Software Solutions has received more than $5.2 million in federal and non-federal funding to support the development of technology for the oil and gas sector to monitor and reduce methane emissions.

Thanks to the work backed by the new funding, Envana says its suite of emissions management software will become the industry's first technology to allow an oil and gas company to obtain a full inventory of greenhouse gases.

The funding comes from a more than $4.2 million grant from the U.S. Department of Energy (DOE) and more than $1 million in non-federal funding.

“Methane is many times more potent than carbon dioxide and is responsible for approximately one-third of the warming from greenhouse gases occurring today,” Brad Crabtree, assistant secretary at DOE, said in 2024.

With the funding, Envana will expand artificial intelligence (AI) and physics-based models to help detect and track methane emissions at oil and gas facilities.

“We’re excited to strengthen our position as a leader in emissions and carbon management by integrating critical scientific and operational capabilities. These advancements will empower operators to achieve their methane mitigation targets, fulfill their sustainability objectives, and uphold their ESG commitments with greater efficiency and impact,” says Nagaraj Srinivasan, co-lead director of Envana.

In conjunction with this newly funded project, Envana will team up with universities and industry associations in Texas to:

  • Advance work on the mitigation of methane emissions
  • Set up internship programs
  • Boost workforce development
  • Promote environmental causes

Envana, a software-as-a-service (SaaS) startup, provides emissions management technology to forecast, track, measure and report industrial data for greenhouse gas emissions.

Founded in 2023, Envana is a joint venture between Houston-based Halliburton, a provider of products and services for the energy industry, and New York City-based Siguler Guff, a private equity firm. Siguler Gulf maintains an office in Houston.

“Envana provides breakthrough SaaS emissions management solutions and is the latest example of how innovation adds to sustainability in the oil and gas industry,” Rami Yassine, a senior vice president at Halliburton, said when the joint venture was announced.

---

This story originally appeared on our sister site, EnergyCapitalHTX.com

Houston’s journey towards a clean energy future is a testament to the power of innovation and adaptability. Photo via Getty Images

Expert: How to best repurpose Houston’s infrastructure for a clean energy future

guest column

Houston, often dubbed the “Energy Capital of the World,” is at a pivotal moment in its history. Known for its vast oil and gas reserves, the city is now embracing a new role as a leader in the clean energy transition. This shift is not just about adopting new technologies but also about creatively repurposing existing infrastructure to support sustainable energy solutions.

Houston’s offshore oil wells, many of which are old or abandoned, present a significant opportunity for carbon capture. By repurposing these wells, we can sequester carbon dioxide, reducing greenhouse gas emissions and mitigating climate change. This approach not only utilizes existing infrastructure but also provides a cost-effective solution for carbon management. According to the Greater Houston Partnership, initiatives like these are crucial as Houston aims to lower its climate-changing greenhouse gas emissions. Exxon estimates that just their proposed CCS hub could capture and store 50 million metric tons of CO2 annually by 2030 and 100 million metric tons by 2040.

The proximity of abandoned offshore platforms to the coast makes them ideal candidates for renewable energy substations. These platforms can be transformed into hubs for wind, solar or tidal energy, facilitating the integration of renewable energy into the grid. This repurposing not only maximizes the use of existing structures but also minimizes environmental disruption.

Decommissioned pipelines, which are already in place, offer a ready-made solution for routing renewable energy cables. By using these existing rights of way, Houston can avoid disturbing additional seafloor and reduce the environmental impact of new cable installations. This strategy ensures a smoother transition to renewable energy infrastructure. The U.S. Energy Information Administration notes that Texas, including Houston, leads the nation in wind-generated electricity, highlighting the potential for further renewable energy development.

Onshore oil and gas facilities in Houston also hold potential for clean energy repurposing. Wells that were drilled but never used for oil or gas can be adapted for geological thermal energy storage. This process involves storing excess renewable energy in the form of heat, which can be retrieved when needed, providing a reliable and sustainable energy source. This innovative use of existing wells aligns with Houston’s broader energy transition strategy, which aims to leverage the city’s industrial expertise for a low-carbon future.

Once the land has been remediated, old and abandoned oil fields can be converted into solar farms. This transformation not only provides a new use for previously contaminated land but also contributes to the generation of clean, renewable energy. Solar farms on these sites can help meet Houston’s energy needs while supporting environmental restoration. The Environmental Protection Agency in recent years recognized Houston as the top city in the U.S. for green energy usage, with annual green power usage topping 1 billion kilowatt-hours in 2021.

Houston’s journey towards a clean energy future is a testament to the power of innovation and adaptability. By repurposing existing infrastructure, we can create a sustainable energy landscape that honors the city’s industrial past while paving the way for a greener tomorrow. These strategies highlight the potential for Houston to lead in the clean energy transition, setting an example for cities worldwide.

———

Tershara Mathews is the national offshore wind lead at WSP.

This article originally ran on EnergyCapital.


Cindy Taff of Sage Geosystems shares her vision for her company and for the future of energy. Photo courtesy of Sage

Profile: Houston founder helps create a new way of making clean electricity

leading energy

When Cindy Taff was a vice president at the giant oil and gas company Shell in Houston, her middle schooler Brianna would sometimes look over her shoulder as she worked from home.

“Why are you still working in oil and gas?” her daughter asked more than once. “Is there a future in it? Why aren’t you moving into something clean?”

The words weighed on Taff.

“As a parent you want to give direction, and was I giving her the right direction?” she recalled.

At Shell, Taff was in charge of drilling wells and bringing them into production. She worked on oil and natural gas that's called unconventional in the industry, because the oil or natural gas is difficult to get out of the ground — it doesn't naturally gush out like in movies. It's a term often used for oily shale rock. Taff was somewhat unconventional for the industry, too. Her coworkers used to tease her for driving an efficient hybrid.

“You’re not helping oil and gas prices by driving a Prius," they'd say.

______

EDITOR’S NOTE: This is part of an occasional series of personal stories from the energy transition — the change away from a fossil-fuel based world that largely causes climate change.

______

Taff wanted Shell to pursue the energy that comes from the Earth's natural heat — geothermal. Her team looked into it, but Shell never greenlit any of those projects, saying it would take too much time to recoup the investment.

When Brianna went to college, she was passionate about energy too, but she wanted to work on renewables. After her sophomore year, in the summer of 2020, she got an internship at a geothermal company — one that in fact had just been launched by Taff's former colleagues at Shell — Sage Geosystems in Houston.

Now it was Taff looking over her daughter's shoulder and asking question as she worked from home during the pandemic.

And Sage executives were talking to Brianna, too. “We could use your mom here," they said. "Can you get her to come work for us?” Brianna recalled recently.

That's how Cindy Taff left her 36-year career at Shell to become chief operating officer at Sage.

“I didn't understand why Shell wasn't pursuing it,” she said about applying the company's drilling expertise to heat energy. "Then I got this great opportunity to pivot from oil and gas and work with these guys that I have the utmost respect for. And also, I wanted to make my daughter proud, quite frankly.”

Brianna Byrd, now 24, is the operations engineer and spokesperson at the company. She's glad her mother, now CEO, left oil and gas.

“Of course I’m biased, she’s my mom, but I don’t think Sage would be where it is without her,” she said.

The United States is a world leader in electricity made from geothermal energy, but this kind of electricity still accounts for less than half a percent of the nation’s total large-scale generation, according to the U.S. Energy Information Administration. In 2023, most geothermal electricity came from California, Nevada, Utah, Hawaii, Oregon, Idaho and New Mexico, where there are reservoirs of steam, or very hot water, close to the surface.

The Energy Department estimates this next generation of geothermal projects, like what Sage is doing, could provide some 90 gigawatts by 2050 — enough to power 65 million homes or more. That hinges on private investment, and on companies like Sage introducing this form of energy to regions where, until now, it’s been thought to be impossible.

How it works

Sage has two main technologies: The first makes electricity out of heat. The company drills wells and fractures hot, dry rock. Then electric pumps push water into those fractures, heating it up, and the hot water gets jettisoned to the surface where it spins a turbine.

But a funny thing happened during testing in Starr County, Texas. In late 2021, the team realized much of their technology could also be used to store energy.

If that works, it could be a big deal. Currently, to store energy at large scale, the United States is adding batteries, mostly lithium-ion type, to solar and wind projects, so they can charge up and send electricity back to the electric grid when the sun is not shining or the wind is not blowing. These batteries typically supply four hours maximum power.

Sage envisions some of its technology placed at solar and wind farms, too. When electricity demand is low, they'll use extra energy from a solar or wind farm to run electric pumps, pumping water into the underground fractures, leaving it there until demand for electricity increases — storing the energy beneath the Earth's surface for hours, days or even weeks.

It's a novel way to use the technology, said Silviu Livescu, lead author on a report looking at the future of geothermal in Texas. Livescu knows Taff and has followed the company's progress.

“It’s the right moment for companies like Sage with a purpose, with a mission and with the technology to show that geothermal indeed is the energy source we need to address climate change,” said Livescu, who co-founded a different geothermal startup in Austin, Texas.

These days, Taff is often out in front, talking with politicians and policymakers about the potential of geothermal. She attended the United Nations COP28 climate talks last year to share her vision for this kind of energy.

Sage has raised $30 million so far and is growing.

It's building a small (3-megawatt), geothermal energy storage system at San Miguel Electric Cooperative, Inc., south of San Antonio this year. It's working with U.S. military facilities in Texas that see geothermal as a way to power their bases securely. Sage recently announced partnerships for heating communities in Bucharest, Romania; clean electricity from geothermal for Meta's data centers, and energy storage and geothermal projects in California.

The company is final-testing a proprietary turbine to more efficiently convert heat to electricity.

Because of her oil and gas background, Taff said she knows geothermal will only be adopted widely if the cost comes down. The mantra at Sage is: It's going to be clean and it's going to be cheap. She's excited to be working in a field she feels is on the cusp of playing a big role in cleaning and stabilizing the electrical grid.

“I’ve never looked back,” she said. “I love what I’m doing and I think it’s going to be transformative.”

Chevron expects all of its corporate functions to shift to Houston over the next five years. Photo via Getty Images

Chevron to relocate HQ, executives to Houston

big move

The Energy Capital of the World is adding another jewel to its corporate crown.

With the impending move of Chevron’s headquarters from Northern California to Houston, the Houston area will be home to 24 Fortune 500 companies. Chevron ranks 15th on this year’s Fortune 500.

Oil and gas giant Chevron, currently based in San Ramon, California, will join three Fortune 500 competitors that already maintain headquarters in the Houston area:

  • Spring-based ExxonMobil, No. 7 on the Fortune 500
  • Houston-based Phillips 66, No. 26 on the Fortune 500
  • Houston-based ConocoPhillips, No. 68 on the Fortune 500

Chevron, which posted revenue of $200.9 billion in 2023, employs about 7,000 people in the Houston area and about 2,000 people in San Ramon. The company says its chairman and CEO, Mike Wirth, and vice chairman, Mark Nelson, will move to Houston before the end of 2024.

In an interview with The Wall Street Journal, Wirth acknowledged Chevron’s differences of opinion with California policymakers regarding energy matters.

“We believe California has a number of policies that raise costs, that hurt consumers, that discourage investment and ultimately we think that’s not good for the economy in California and for consumers,” Wirth said.

Chevron expects all of its corporate functions to shift to Houston over the next five years. Jobs that support the company’s California operations will remain in San Ramon, where Chevron employs about 2,000 people. Some Chevron employees in San Ramon will relocate to Houston.

The company’s move to Houston hardly comes as a surprise. Speculation about a relocation to Houston intensified after Chevron sold its 98-acre San Ramon headquarters in 2022 and moved corporate employees to leased office space. Over the past several years, Chevron has shifted various corporate functions to Houston.

“This is just the final step that many industry observers were waiting to happen,” Ken Medlock, senior director of the Baker Institute’s Center for Energy Studies at Rice University, says in a news release.

“To start, Houston provides a world-class location for internationally focused energy companies, which is why there is such a massive international presence here,” Medlock adds. “Texas is also the nation’s largest energy producer across multiple energy sources and is poised to lead in emerging opportunities such as hydrogen and carbon capture, so Houston is a great place for domestically focused activities as well.”

The announcement of Chevron’s exit from California comes just a year after ExxonMobil finalized its relocation from Irving to Spring.

“Chevron’s decision to relocate its headquarters underscores the compelling advantages that position Houston as the prime destination for leading energy companies today and for the future,” Steve Kean, president and CEO of the Greater Houston Partnership, says in a post on the organization’s website.

“With deep roots in our region,” he adds, “Chevron is [a] key player in establishing Houston as a global energy leader. This move will further enhance those efforts.”

------

This article originally ran on EnergyCapital.

Houston could have ranked higher on a global report of top cities in the world if it had a bit more business diversification. Photo via Getty Images

Report ranks Houston as a top global city — with one thing holding it back

take note

A new analysis positions the Energy Capital of the World as an economic dynamo, albeit a flawed one.

The recently released Oxford Economics Global Cities Index, which assesses the strengths and weaknesses of the world’s 1,000 largest cities, puts Houston at No. 25.

Houston ranks well for economics (No. 15) and human capital (No. 18), but ranks poorly for governance (No. 184), environment (No. 271), and quality of life (No. 298).

New York City appears at No. 1 on the index, followed by London; San Jose, California; Tokyo; and Paris. Dallas lands at No. 18 and Austin at No. 39.

In its Global Cities Index report, Oxford Economics says Houston’s status as “an international and vertically integrated hub for the oil and gas sector makes it an economic powerhouse. Most aspects of the industry — downstream, midstream, and upstream — are managed from here, including the major fuel refining and petrochemicals sectors.”

“And although the city has notable aerospace and logistics sectors and has diversified into other areas such as biomedical research and tech, its fortunes remain very much tied to oil and gas,” the report adds. “As such, its economic stability and growth lag other leading cities in the index.”

The report points out that Houston ranks highly in the human capital category thanks to the large number of corporate headquarters in the region. The Houston area is home to the headquarters of 26 Fortune 500 companies, including ExxonMobil, Hewlett Packard Enterprise, and Sysco.

Another contributor to Houston’s human capital ranking, the report says, is the presence of Rice University, the University of Houston and the Texas Medical Center.

“Despite this,” says the report, “it lacks the number of world-leading universities that other cities have, and only performs moderately in terms of the educational attainment of its residents.”

Slower-than-expected population growth and an aging population weaken Houston’s human capital score, the report says.

Meanwhile, Houston’s score for quality is life is hurt by a high level of income inequality, along with a low life expectancy compared with nearly half the 1,000 cities on the list, says the report.

Also in the quality-of-life bucket, the report underscores the region’s variety of arts, cultural, and recreational activities. But that’s offset by urban sprawl, traffic congestion, an underdeveloped public transportation system, decreased air quality, and high carbon emissions.

Furthermore, the report downgrades Houston’s environmental stature due to the risks of hurricanes and flooding.

“Undoubtedly, Houston is a leading business [center] that plays a key role in supporting the U.S. economy,” says the report, “but given its shortcomings in other categories, it will need to follow the path of some of its more well-rounded peers in order to move up in the rankings.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Autonomous truck company with Houston routes goes public

on a roll

Kodiak Robotics, a provider of AI-powered autonomous vehicle technology, has gone public through a SPAC merger and has rebranded as Kodiak AI. The company operates trucking routes to and from Houston, which has served as a launchpad for the business.

Privately held Kodiak, founded in 2018, merged with a special purpose acquisition company — publicly held Ares Acquisition Corp. II — to form Kodiak AI, whose stock now trades on the Nasdaq market.

In September, Mountain View, California-based Kodiak and New York City-based Ares disclosed a $145 million PIPE (private investment in public equity) investment from institutional investors to support the business combo. Since announcing the SPAC deal, more than $220 million has been raised for the new Kodiak.

“We believe these additional investments underscore our investors’ confidence in the value proposition of Kodiak’s safe and commercially deployed autonomous technology,” Don Burnette, founder and CEO of Kodiak, said in a news release.

“We look forward to leading the advancement of the commercial trucking and public sector industries,” he added, “and delivering on the exciting value creation opportunities ahead to the benefit of customers and shareholders.”

Last December, Kodiak debuted a facility near George Bush Intercontinental/Houston Airport for loading and loading driverless trucks. Transportation and logistics company Ryder operates the “truckport” for Ryder.

The facility serves freight routes to and from Houston, Dallas and Oklahoma City. Kodiak’s trucks currently operate with or without drivers. Kodiak’s inaugural route launched in 2024 between Houston and Dallas.

One of the companies using Kodiak’s technology is Austin-based Atlas Energy Solutions, which owns and operates four driverless trucks equipped with Kodiak’s driver-as-a-service technology. The trucks pick up fracking sand from Atlas’ Dune Express, a 42-mile conveyor system that carries sand from Atlas’ mine to sites near customers’ oil wells in the Permian Basin.

Altogether, Atlas has ordered 100 trucks that will run on Kodiak’s autonomous technology in an effort to automate Atlas’ supply chain.

Rice University scientists invent new algorithm to fight Alzheimer's

A Seismic Breakthrough

A new breakthrough from researchers at Rice University could unlock the genetic components that determine several human diseases such as Parkinson's and Alzheimer's.

Alzheimer's disease affected 57 million people worldwide in 2021, and cases in the United States are expected to double in the next couple of decades. Despite its prevalence and widespread attention of the condition, the full mechanisms are still poorly understood. One hurdle has been identifying which brain cells are linked to the disease.

For years, it was thought that the cells most linked with Alzheimer's pathology via DNA evidence were microglia, infection-fighting cells in the brain. However, this did not match with actual studies of Alzheimer's patients' brains. It's the memory-making cells in the human brain that are implicated in the pathology.

To prove this link, researchers at Rice, alongside Boston University, developed a computational algorithm called “Single-cell Expression Integration System for Mapping Genetically Implicated Cell Types," or SEISMIC. It allows researchers to zero in on specific neurons linked to Alzheimer's, the first of its kind. Qiliang Lai, a Rice doctoral student and the lead author of a paper on the discovery published in Nature Communications, believes that this is an important step in the fight against Alzheimer's.

“As we age, some brain cells naturally slow down, but in dementia — a memory-loss disease — specific brain cells actually die and can’t be replaced,” said Lai. “The fact that it is memory-making brain cells dying and not infection-fighting brain cells raises this confusing puzzle where DNA evidence and brain evidence don’t match up.”

Studying Alzheimer's has been hampered by the limitations of computational analysis. Genome-wide association studies (GWAS) and single-cell RNA sequencing (scRNA-seq) map small differences in the DNA of Alzheimer's patients. The genetic signal in these studies would often over-emphasize the presence of infection fighting cells, essentially making the activity of those cells too "loud" statistically to identify other factors. Combined with greater specificity in brain regional activity, SEISMIC reduces the data chatter to grant a clearer picture of the genetic component of Alzheimer's.

“We built our SEISMIC algorithm to analyze genetic information and match it precisely to specific types of brain cells,” Lai said. “This enables us to create a more detailed picture of which cell types are affected by which genetic programs.”

Though the algorithm is not in and of itself likely to lead to a cure or treatment for Alzheimer's any time soon, the researchers say that SEISMIC is already performing significantly better than existing tools at identifying important disease-relevant cellular signals more clearly.

“We think this work could help reconcile some contradicting patterns in the data pertaining to Alzheimer’s research,” said Vicky Yao, assistant professor of computer science and a member of the Ken Kennedy Institute at Rice. “Beyond that, the method will likely be broadly valuable to help us better understand which cell types are relevant in different complex diseases.”

---

This article originally appeared on CultureMap.com.

5 incubators and accelerators fueling the growth of Houston startups

meet the finalists

Houston is home to numerous accelerators and incubators that support founders in pushing their innovative startups and technologies forward.

As part of our 2025 Houston Innovation Awards, the new Incubator/Accelerator of the Year category honors a local incubator or accelerator that is championing and fueling the growth of Houston startups.

Five incubators and accelerators have been named finalists for the 2025 award. They support startups ranging from hard-tech companies to digital health startups.

Read more about these organizations below. Then join us at the Houston Innovation Awards on Nov. 13 at Greentown Labs, when the winner will be unveiled.

Get your tickets now on sale for this exclusive event celebrating Houston Innovation.

Activate

Hard tech incubator Activate supports scientists in "the outset of their entrepreneurial journey." The Houston hub was introduced last year, and joins others in Boston, New York, and Berkley, California—where Activate is headquartered. It named its second Houston cohort this summer.

This year, the incubator grew to include its largest number of concurrent supported fellows, with 88 companies currently being supported nationally. In total, Activate has supported 296 fellows who have created 236 companies. Those companies have raised over $4 billion in follow-on funding, according to Activate. In Houston, it has supported several Innovation Awards finalists, including Solidec, Bairitone Health and Deep Anchor Solutions. It is led locally by Houston Managing Director Jeremy Pitts.

EnergyTech Nexus

Cleantech startup hub EnergyTech Nexus' mission is to accelerate the energy transition by connecting founders, investors and industrial stakeholders and helping to develop transformative companies, known as "thunderlizards."

The hub was founded in 2023 by CEO Jason Ethier, Juliana Garaizar and Nada Ahmed. It has supported startups including Capwell Services, Resollant, Syzygy Plasmonics, Hertha Metals, EarthEn Energy and Solidec—many of which are current or past Innovation Awards finalists. This year Energy Tech Nexus launched its COPILOT Accelerator, powered by Wells Fargo Innovation Incubator (IN²) at the National Renewable Energy Laboratory (NREL). COPILOT partners with Browning the Green Space, a nonprofit that promotes diversity, equity and inclusion (DEI) in the clean energy and climatech sectors. Energy Tech Nexus also launched its Liftoff fundraising program, its Investor Program, and a "strategic ecosystem partnership" with Greentown Labs.

Greentown Labs

Climatetech incubator Greentown Labs offers its community resources and a network to climate and energy innovation startups looking to grow. The collaborative community offers members state-of-the-art prototyping labs, business resources and access to investors and corporate partners. The co-located incubator was first launched in Boston in 2011 before opening in Houston in 2021.

Greentown has seen major changes and activity this year. In February, Greentown announced Georgina Campbell Flatter as its new CEO, along with a new Board of Directors. In July, it announced Lawson Gow as its Head of Houston, a "dedicated role to champion the success of Greentown Houston’s startups and lead Greentown’s next chapter of impact in the region," according to Greentown. It has since announced numerous new partnerships, including those with Energy Tech Nexus, Los Angeles-based software development firm Nominal, to launch the new Industrial Center of Excellence; and Houston-based Shoreless, to launch an AI lab onsite. Greentown Houston has supported 175 startups since its launch in 2021, with 45 joining in the last two years. Those startups include the likes of Hertha Metals, RepAir Carbon, Solidec, Eclipse Energy (formerly GoldH2) and many others.

Healthtech Accelerator (TMCi)

The Healthtech Accelerator, formerly TMCx, focuses on clinical partnerships to improve healthcare delivery and outcomes. Emerging digital health and medical device startups that join the accelerator are connected with a network of TMC hospitals and seasoned advisors that will prepare them for clinical validation, funding and deployment.

The Healthtech Accelerator is part of Texas Medical Center Innovation, which also offers the TMCi Accelerator for Cancer Therapeutics. The Healthtech Accelerator named its 19th, and latest, cohort of 11 companies last month.

Impact Hub Houston

Impact Hub Houston supports early-stage ventures at various stages of development through innovative programs that address pressing societal issues. The nonprofit organization supports social impact startups through mentorship, connections and training opportunities.

There are more than 110 Impact Hubs globally with 24,000-plus members spanning 69 countries, making it one of the world’s largest communities for accelerating entrepreneurial solutions toward the United Nations' Sustainable Development Goals (SDGs).

---

The Houston Innovation Awards program is sponsored by Houston City College Northwest, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.