The Oxy Innovation Center has opened at the Ion and Industrious' coworking space launches soon. Photo courtesy of The Ion

Houston-based Occidental officially opened its new Oxy Innovation Center with a ribbon cutting at the Ion last week.

The opening reflects Oxy and the Ion's "shared commitment to advancing technology and accelerating a lower-carbon future," according to an announcement from the Ion.

Oxy, which was named a corporate partner of the Ion in 2023, now has nearly 6,500 square feet on the fourth floor of the Ion. Rice University and the Rice Real Estate Company announced the lease of the additional space last year, along with agreements with Fathom Fund and Activate.

At the time, the leases brought the Ion's occupancy up to 90 percent.

Additionally, New York-based Industrious plans to launch its coworking space at the Ion on May 8. The company was tapped as the new operator of the Ion’s 86,000-square-foot coworking space in Midtown in January.

Dallas-based Common Desk previously operated the space, which was expanded by 50 percent in 2023 to 86,000 square feet.

CBRE agreed to acquire Industrious in a deal valued at $400 million earlier this year. Industrious also operates another local coworking space is at 1301 McKinney St.

Industrious will host a launch party celebrating the new location Thursday, May 8. Find more information here.


Oxy Innovation Center. Photo via LinkedIn.

A New York-based nonprofit that provides tech training has announced its opening a location in the Ion. Photo courtesy of the Ion

Ion Houston expands tech workforce development partnership with nonprofit

tech training

Houstonians can now apply to a new, tuition-free program at the Ion to boost their tech skills and knowledge.

Earlier this year the Ion announced New York-based Per Scholas as its workforce development partner. And starting October, Per Scholas will launch its 12- to 15- week technology skills training courses at the innovation hub, the Ion announced this week.

The new operation, known as Per Scholas Houston, is backed by support from from BlackRock Inc. and Comcast NBCUniversal.

Per Scholas Houston will first introduce the nonprofit's IT Support course. The program will give students an opportunity to earn a Google IT Support Professional Certificate and the CompTIA A+ certification. Click here to apply.

“Per Scholas commends the vision and commitment of the City of Houston, Ion, Rice University, and so many others, to catalyze change, grow ideas and innovation, and drive impact. We are thrilled that Per Scholas Houston is now part of the effort,” Plinio Ayala, president and CEO of Per Scholas, says in a statement. “With tremendous investment from Ion, BlackRock, Comcast, our proven skills training will develop technologists to power Houston’s workforce today – and tomorrow–creating a more inclusive and equitable economy. We can’t wait to get started.”

According to the company, more than 80 percent of those who complete Per Scholas training programs find full-time employment within a year of graduating, and about 85 percent of Per Scholas graduates are people of color. Per Scholas has 20 locations in the U.S., including a location in downtown Dallas.

Applicants must be 18 or older to apply and have earned a high school diploma or equivalent and be a U.S. citizen or authorized to work in the U.S., according to Per Scholas's website. They must pass an assessments review before beginning coursework, meet the nonprofit's learner pre-training income criteria and be available to attend classes Monday through Friday from 9 a.m. to 4 p.m.

In early May, The Ion announced 10 new tenants that were either relocating or expanding their presence in Houston, bringing the total space leased to 86 percent. Later that month, it added corporate giants Occidental, United Airlines Ventures and Woodside Energy as partners.
Cemvita Factory is working on a pilot plant with Oxy to scale its biotechnology. Photo via OxyLowCarbon.com

Oxy taps Houston startup's carbon negative biotechnology for new pilot plant

sustainability moves

Occidental's venture arm — Oxy Low Carbon Ventures — has announced its plans to construct and operate a one metric ton per month bio-ethylene pilot plant featuring Houston-based Cemvita Factory's technology that biomimics photosynthesis to convert carbon dioxide into feedstocks.

The new plant will scale the process, which was jointly developed between Cemvita and OLCV, and is expected sometime next year, according to a press release from Oxy.

"Today bio-ethylene is made from bio-ethanol, which is made from sugarcane, which in turn was created by photosynthesizing CO2. Our bio-synthetic process simply requires CO2, water and light to produce bio-ethylene, and that's why it saves a lot of cost and carbon emissions," says Moji Karimi, co-founder and CEO of Cemvita Factory, in the release. "This project is a great example of how Cemvita is applying industrial-strength synthetic biology to help our clients lower their carbon footprint while creating new revenue streams."

Oxy and Cemvita have been working together for a while, and in 2019, OLCV invested an undisclosed amount into the startup. The investment, according to the release, was made to jointly explore how these advances in synthetic biology can be used for sustainability efforts in the bio-manufacturing of OxyChem's products.

"This technology could provide an opportunity to offer a new, non-hydrocarbon-sourced ethylene product to the market, reducing carbon emissions, and in the future benefit our affiliate, OxyChem, which is a large producer and consumer of ethylene in its chlorovinyls business," says Robert Zeller, vice president of technology at OLCV, in a news release.

Moji Karimi founded the company with his sister and Cemvita CTO, Tara, in 2017. The idea was to biomimic photosynthesis to take CO2 and turn it into something else. The first iteration of the technology turned CO2 into sugar — the classic photosynthesis process. Karimi says the idea was to create this process for space, so that astronauts can turn the CO2 they breathe out into a calorie source.

"Nature provided the inspiration," noted Dr. Tara Karimi, co-founder and CTO of Cemvita Factory. "We took a gene from a banana and genetically engineered it into our CO2-utilizing host microorganism. We are now significantly increasing its productivity with the goal to achieve commercial metrics that we have defined alongside OLCV."

A couple weeks ago, Moji Karimi joined the Houston Innovators Podcast to discuss growth and challenges Cemvita Factory faced.

"We're defining this new category for application of synthetic biology in heavy industries for decarbonization," he shares on the show. Stream the episode below.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.