Nvidia will produce AI supercomputers in the U.S. for the first time. Getty Images

Nvidia announced Monday that it will produce its artificial intelligence supercomputers in the United States for the first time.

The tech giant said it has commissioned more than 1 million square feet of manufacturing space to build and test its specialized Blackwell chips in Arizona and AI supercomputers in Texas — part of an investment the company said will produce up to half a trillion dollars of AI infrastructure in the next four years.

“The engines of the world’s AI infrastructure are being built in the United States for the first time,” Nvidia founder Jensen Huang said in a statement. “Adding American manufacturing helps us better meet the incredible and growing demand for AI chips and supercomputers, strengthens our supply chain and boosts our resiliency.”

Nvidia’s announcement comes as the Trump administration has said that tariff exemptions on electronics like smartphones and laptops are only a temporary reprieve until officials develop a new tariff approach specific to the semiconductor industry.

White House officials, including President Donald Trump himself, spent Sunday downplaying the significance of exemptions that lessen but won’t eliminate the effect of U.S. tariffs on imports of popular consumer devices and their key components.

“They’re exempt from the reciprocal tariffs but they’re included in the semiconductor tariffs, which are coming in probably a month or two,” U.S. Commerce Secretary Howard Lutnick told ABC’s “This Week” on Sunday.

Nvidia said in a post on its website that it has started Blackwell production at Taiwan Semiconductor Manufacturing Co. chip plants in Phoenix. The Santa Clara, California-based chip company is also building supercomputer manufacturing plants in Texas — with Foxconn in Houston and Wistron in Dallas.

Nvidia's AI super computers will serve as the engines for AI factories, “a new type of data center created for the sole purpose of processing artificial intelligence,” the company said, adding that manufacturing in the U.S. will create “hundreds of thousands of jobs and drive trillions of dollars in economic security over the coming decades."

Mass production at both plants is expected to ramp up in the next 12-15 months, Nvidia said. The company also plans on partnering with Taiwan-based company SPIL and Amkor for “packaging and testing operations” in Arizona.

In a statement Monday, the White House called Nvidia’s move “the Trump Effect in action.”

Trump “has made U.S.-based chips manufacturing a priority as part of his relentless pursuit of an American manufacturing renaissance, and it’s paying off — with trillions of dollars in new investments secured in the tech sector alone,” the White House said.

Earlier this year, Trump announced a joint venture investing up to $500 billion for infrastructure tied to artificial intelligence by a new partnership formed by OpenAI, Oracle and SoftBank. The new entity, Stargate, was tasked with building out data centers and the electricity generation needed for the further development of the fast-evolving AI in Texas, according to the White House.

The initial investment is expected to be $100 billion and could reach five times that sum.

UH — along with some industry partners — has announced plans to work on applications for the industrial metaverse. Image via Getty Images

University of Houston moves in on industrial metaverse with new partnership

digital development

The University of Houston is helping advance the industrial metaverse.

UH has teamed up with the AI Innovation Consortium, software company Nvidia, and oil and gas engineering and services company TechnipFMC to create applications for the industrial metaverse. The project is affiliated with the Artificial Intelligence Industry Incubator and Digital Oilfield Lab at UH’s campus in Sugar Land. The incubator and lab opened in 2020.

As VentureBeat defines it, the industrial metaverse can transform the way every physical asset — such as a building, plane, robot, or car — is created, assembled, and operated. The industrial metaverse marries the “real world” with technology such as artificial intelligence (AI), machine learning, cloud computing, edge computing, the internet of things (IoT), 5G, and extended reality (virtual, augmented, and mixed reality).

Global revenue for the industrial metaverse is projected to reach $540 billion by 2025. A key fixture of the industrial metaverse are “digital twins,” which are virtual replicas of physical entities or systems (such as factories).

Adam Berg, manager of learning solutions at TechnipFMC, has been working with the UH College of Technology and the AI Innovation Consortium to test an augmented reality program for management of upstream resources. TechnipFMC is a pioneer in extended reality.

One of the UH professors participating in this effort is David Crawley, professor of practice at the university’s College of Technology and a trustee of the AI Innovation Consortium. Last year, the consortium hosted an AI conference at the UH campus in Sugar Land. The consortium is a think tank whose members include UH, Pennsylvania State University, Louisiana State University, and the University of Louisville (Kentucky).

Crawley says the consortium’s “academic ecosystem” is critical to developing the workforce of the future.

Konrad Konarski, chairman of the consortium, says the group is building the world’s largest portfolio of industrial metaverse apps for the oilfield services industry and various manufacturing sectors.

“This means a maintenance manager, an operations technology expert, or whoever is responsible for a metaverse technology project will be able to pick up an augmented reality platform or a wearable computer, or simply a smartphone, and seamlessly interconnect their real-world operating environment to and from the metaverse,” Konarski, an AI and IoT expert, says in a news release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston team’s discovery brings solid-state batteries closer to EV use

A Better Battery

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

---

This article originally appeared on EnergyCaptialHTX.com.

Rice biotech accelerator appoints 2 leading researchers to team

Launch Pad

The Rice Biotech Launch Pad, which is focused on expediting the translation of Rice University’s health and medical technology discoveries into cures, has named Amanda Nash and Kelsey L. Swingle to its leadership team.

Both are assistant professors in Rice’s Department of Bioengineering and will bring “valuable perspective” to the Houston-based accelerator, according to Rice. 

“Their deep understanding of both the scientific rigor required for successful innovation and the commercial strategies necessary to bring these technologies to market will be invaluable as we continue to build our portfolio of lifesaving medical technologies,” Omid Veiseh, faculty director of the Launch Pad, said in a news release.

Amanda Nash

Nash leads a research program focused on developing cell communication technologies to treat cancer, autoimmune diseases and aging. She previously trained as a management consultant at McKinsey & Co., where she specialized in business development, portfolio strategy and operational excellence for pharmaceutical and medtech companies. She earned her doctorate in bioengineering from Rice and helped develop implantable cytokine factories for the treatment of ovarian cancer. She holds a bachelor’s degree in biomedical engineering from the University of Houston.

“Returning to Rice represents a full-circle moment in my career, from conducting my doctoral research here to gaining strategic insights at McKinsey and now bringing that combined perspective back to advance Houston’s biotech ecosystem,” Nash said in the release. “The Launch Pad represents exactly the kind of translational bridge our industry needs. I look forward to helping researchers navigate the complex path from discovery to commercialization.”

Kelsey L. Swingle

Swingle’s research focuses on engineering lipid-based nanoparticle technologies for drug delivery to reproductive tissues, which includes the placenta. She completed her doctorate in bioengineering at the University of Pennsylvania, where she developed novel mRNA lipid nanoparticles for the treatment of preeclampsia. She received her bachelor’s degree in biomedical engineering from Case Western Reserve University and is a National Science Foundation Graduate Research Fellow.

“What draws me to the Rice Biotech Launch Pad is its commitment to addressing the most pressing unmet medical needs,” Swingle added in the release. “My research in women’s health has shown me how innovation at the intersection of biomaterials and medicine can tackle challenges that have been overlooked for far too long. I am thrilled to join a team that shares this vision of designing cutting-edge technologies to create meaningful impact for underserved patient populations.”

The Rice Biotech Launch Pad opened in 2023. It held the official launch and lab opening of RBL LLC, a biotech venture creation studio in May. Read more here.

University of Houston archaeologists make history with Mayan tomb discovery

History in the Making

Two University of Houston archaeologists have made scientific history with the discovery of a Mayan king's tomb in Belize.

The UH team led by husband and wife scientists Arlen F. Chase and Diane Z. Chase made the discovery at Caracol, the largest Mayan archeological site in Belize, which is situated about 25 miles south of Xunantunich and the town of San Ignacio. Together with Belize's Institute of Archeology, as well as support from the Geraldine and Emory Ford Foundation and the KHR Family Fund, they uncovered the tomb of Caracol's founder, King Te K’ab Chaak. Their work used airborne light detection and ranging technology to uncover previously hidden roadways and structures that have been reclaimed by the jungle.

The tomb was found at the base of a royal family shrine. The king, who ascended the throne in 331 AD, lived to an advanced enough age that he no longer had teeth. His tomb held a collection of 11 pottery vessels, carved bone tubes, jadeite jewelry, a mosaic jadeite mask, Pacific spondylus shells, and various other perishable items. Pottery vessels found in the chamber depict a Maya ruler wielding a spear as he receives offerings from supplicants represented as deities; the figure of Ek Chuah, the Maya god of traders, surrounded by offerings; and bound captives, a motif also seen in two related burials. Additionally, two vessels had lids adorned with modeled handles shaped like coatimundi (pisote) heads. The coatimundi, known as tz’uutz’ in Maya, was later adopted by subsequent rulers of Caracol as part of their names.

 Diane Chase archaeologist in Mayan tomb Diane Z. Chase in the Mayan tomb. Photo courtesy of University of Houston

During the Classical Period, Caracol was one of the main hubs of the Mayan Lowlands and covered an area bigger than that of present-day Belize City. Populations survived in the area for at least 1,000 years before the city was abandoned sometime around 900 AD. The royal dynasty established by Te K’ab Chaak continued at Caracol for over 460 years.

The find is also significant because this was roughly when the Mexican city of Teotihuacan made contact with Caracol, leading to a long relationship of trade and cultural exchange. Cremation sites found in Caracol contain items that would have come from Teotihuacan, showing the relationship between the two distant cities.

"Both central Mexico and the Maya area were clearly aware of each other’s ritual practices, as reflected in the Caracol cremation," said Arlen F. Chase, professor and chair of Comparative Cultural Studies at the University of Houston.

“The connections between the two regions were undertaken by the highest levels of society, suggesting that initial kings at various Maya cities — such as Te K’ab Chaak at Caracol — were engaged in formal diplomatic relationships with Teotihuacan.”

The Chases will present their findings at a conference on Maya–Teotihuacan interaction hosted by the Maya Working Group at the Santa Fe Institute in New Mexico in August 2025.

 UH professors Chase make Mayan Discovery UH archaeologists Arlen F. Chase and Diane Z. Chase Photo courtesy of University of Houston

 

---

This story originally appeared on CultureMap.com.