Nexalin develops non-invasive devices that help reset networks in the brain associated with symptoms of anxiety and insomnia. Photo via Getty Images.

A Houston-based company is taking a medicine-free approach to target brain neurologically associated with mental illness.

Nexalin Technology’s patented, FDA-cleared frequency-based waveform targets key centers of the midbrain to support the normalization of neurochemicals through a process known as Transcranial Alternating Current Stimulation (tACS). Delivered via a non-invasive device, the treatment gently stimulates the hypothalamus and midbrain, helping to “reset networks associated with symptoms” of anxiety and insomnia. Early clinical evidence suggests this approach can promote healthier brain function and improved sleep.

Through its recently appointed scientific advisory board (SAB), Nexalin also aims to target Alzheimer’s disease with a clinical development pipeline supported by published data and internal data from studies involving its proprietary DIFS technology. Nexalin’s Gen-2 SYNC and Gen-3 Halo headset delivers the DIFS, which is a waveform that can penetrate deep brain structures implicated in cognitive decline and mental illness.

The board includes experts in neurology, neuroimaging and neurodegenerative diseases with Dr. Mingxiong Huang, Dr. David Owens, and Dr. Abe Scheer coming on board. Nexalin plans to initiate new Alzheimer’s-focused clinical studies in the Q3 2025 by incorporating cognitive testing, imaging biomarkers, and guided metrics to assess treatment efficacy and neural activation.

“I am excited to work alongside Nexalin’s leadership and fellow SAB members to help guide the next generation of non-invasive neuromodulation therapies,” Huang said in a news release. “The intersection of neuroimaging, brain stimulation, and clinical science holds enormous potential for treating neurodegenerative disease.”

Recently, Nexalin’s proprietary neurostimulation device moved forward with a clinical trial that evaluated its treatment of anxiety disorders and chronic insomnia in Brazil. The first of Nexalin’s Gen-2 15-milliamp neurostimulation devices was shipped to São Paulo, Brazil, and the study will be conducted at the Instituto de Psiquiatria University Hospital (IPq-HCFMUSP). The shipments aim to support the launch of a Phase II clinical trial in adult patients suffering from anxiety and insomnia. The Nexalin Gen-2 15-milliamp neurostimulation device has also been approved in China, Brazil and Oman. Its Gen 1 device first received FDA clearance in 2003, according to the company's website.

The company also enrolled the first patients in its clinical trial at the University of California, San Diego, in collaboration with the VA San Diego Healthcare System for its Nexalin HALO, which looks to treat mild traumatic brain injury and post-traumatic stress disorder in military personnel and the civilian population.

Nexalin previously raised $5 million through a

public stock offering.
FibroBiologics has opened a new 10,000-square-foot Houston lab to scale up research efforts and pave the way for in-house manufacturing. Photo via Fibrobiologics.com

Houston regenerative medicine company expands lab for future trials

new digs

A Houston regenerative medicine company has unveiled new laboratory space with the goal of expanding its pioneering science.

FibroBiologics uses fibroblasts, the body’s most common type of cell, rather than stem cells, to help grow new cells. Fibroblasts are the primary variety of cells that compose connective tissue. FibroBiologics has found in studies that fibroblasts can be even more powerful than stem cells when it comes to both regeneration and immune modulation, meaning they could be a more versatile way forward in those fields.

In 2023, FibroBiologics moved into new lab space in the UH Technology Bridge. Now, with its new space, the publicly traded company, which has more than 240 patents issued or pending, will be even better equipped to power forward with its research.

The new space includes more than 10,000 square feet of space devoted to both labs and offices. The location is large enough to also house manufacturing drug product candidates that will be used in upcoming trials. Additionally, the company reports that it plans to hire additional researchers to help staff the facility.

“This expansion marks a transformative step forward for our company and our mission,” Pete O’Heeron, FibroBiologics founder and CEO, said in a news release. “By significantly increasing the size of our lab, we are creating the space and infrastructure needed to foster greater innovation and accelerate scientific breakthroughs.”

The streamlined, in-house manufacturing process will reduce the company’s reliance on external partners and make the supply chain simpler, O’Heeron added in the release.

Hamid Khoja, the chief scientific officer for FibroBiologics, also chimed in.

“To date, our progress in developing potentially transformative therapeutic candidates for chronic diseases using fibroblasts has been remarkable,” he added in the release. “This new laboratory facility will enable further expansion and acceleration of our research and development efforts. Additionally, the expansive new space will enable us to bring in-house currently outsourced projects, expand our science team and further contribute to the increased efficiency of our R&D efforts.”

This news arrives shortly after a milestone for the company in its research about neurodegenerative disease. Last month, fibroblast treatments in an animal model study demonstrated a notable regeneration of the myelin sheath, the layer that insulates nerves and is worn down by disease.

“Confirming remyelination in a second validated animal model is an important step in our research and development efforts, offering fresh hope for patients with demyelinating diseases, including multiple sclerosis,” O’Heeron added in a separate release. “These findings advance our mission to develop transformative fibroblast-based therapies that address the root causes of chronic disease, not just their symptoms, and reflect our dedication to pushing the frontiers of regenerative medicine."

Daniel Barvin has a neurodegenerative disease in his near future. He joined Houston-based Coya Therapeutics to help fight for a cure to the aggressively deadly ALS. Photo via Getty Images

How this Houston innovator is using his personal connection to ALS fuel his fight for a cure

guest column

We can never predict how our lives will turn out, but then maybe some of us can. Genetic testing showed that I, like my grandfather, aunt, uncle and father before me, would most likely die of amyotrophic lateral sclerosis, more commonly known as ALS, and/or frontotemporal degeneration (FTD) in my 40s.

Being 36, it’s possible that fear could have overtaken my life, but instead I chose to fight for every chance to change not only my life, but the lives of millions who are suffering or may one day suffer from neurodegenerative disease.

ALS is a rare disease that robs one of their ability to control their muscles, leading them to lose their ability to walk, talk and eventually breathe. Eighty percent of cases are sporadic (of unknown origin) and 20 percent have known genetic causes.

When I learned that I carried the C9ORF72 genetic variant, a causative genetic variant for ALS/FTD) my first instincts were to help others understand their status and where they could turn for help. I saw a vacuum for resources and understanding in the genetic ALS space and I knew that thousands were suffering in darkness.

Through the efforts of many, we created the first ever nonprofit – Genetic ALS & FTD: End the Legacy – focused on fighting for the genetic ALS and FTD communities. After making great strides to fight for our rights and access to care, I was asked if I could help my current CEO, Howard Berman, commercialize Dr. Stanley Appel’s regulatory T Cell (Treg) therapy for ALS.

I joined Coya Therapeutics in 2021 as the first employee, working to build a company that would one day bring life changing therapies to patients. Coya’s therapies are based on Dr. Appel’s discovery that neurodegenerative diseases drive an inflammatory response. As inflammation rises, it damages regulatory T cells, and when Tregs are damaged, inflammation becomes a persistent condition driving degeneration and eventually death.

It was at that point that my life changed from the advocacy world to the therapeutic world. Now over three years later, we are closer than ever to making a paradigm change for how patients with ALS and other neurodegenerative diseases are treated.

At Coya, we believe that combination biologics are the future of treating neurodegenerative diseases. COYA 302 is our lead asset, which has shown promising results in a proof-of-concept study released in March of 2023. We are currently working towards a double-blind, placebo-controlled trial for COYA 302 in ALS set to kick off later this year.

I never wanted to live a life so damned by disease, but when put between a rock and a hard place, the only choice is to fight. I don’t know how my life will end, but I hope that my children will know that I faced a great challenge head on with pride and resilience.

In the end, it is the combination of both the worlds I work in that lead to better outcomes for patients, raising awareness and lifesaving research. This ALS Awareness Month, please join us and our partners like the ALS Association, End the Legacy, and I AM ALS in raising awareness about these conditions, their risks, and treatment options.

------

Daniel Barvin is the vice president of operations and patient advocacy at Coya Therapeutics.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.