Nexalin develops non-invasive devices that help reset networks in the brain associated with symptoms of anxiety and insomnia. Photo via Getty Images.

A Houston-based company is taking a medicine-free approach to target brain neurologically associated with mental illness.

Nexalin Technology’s patented, FDA-cleared frequency-based waveform targets key centers of the midbrain to support the normalization of neurochemicals through a process known as Transcranial Alternating Current Stimulation (tACS). Delivered via a non-invasive device, the treatment gently stimulates the hypothalamus and midbrain, helping to “reset networks associated with symptoms” of anxiety and insomnia. Early clinical evidence suggests this approach can promote healthier brain function and improved sleep.

Through its recently appointed scientific advisory board (SAB), Nexalin also aims to target Alzheimer’s disease with a clinical development pipeline supported by published data and internal data from studies involving its proprietary DIFS technology. Nexalin’s Gen-2 SYNC and Gen-3 Halo headset delivers the DIFS, which is a waveform that can penetrate deep brain structures implicated in cognitive decline and mental illness.

The board includes experts in neurology, neuroimaging and neurodegenerative diseases with Dr. Mingxiong Huang, Dr. David Owens, and Dr. Abe Scheer coming on board. Nexalin plans to initiate new Alzheimer’s-focused clinical studies in the Q3 2025 by incorporating cognitive testing, imaging biomarkers, and guided metrics to assess treatment efficacy and neural activation.

“I am excited to work alongside Nexalin’s leadership and fellow SAB members to help guide the next generation of non-invasive neuromodulation therapies,” Huang said in a news release. “The intersection of neuroimaging, brain stimulation, and clinical science holds enormous potential for treating neurodegenerative disease.”

Recently, Nexalin’s proprietary neurostimulation device moved forward with a clinical trial that evaluated its treatment of anxiety disorders and chronic insomnia in Brazil. The first of Nexalin’s Gen-2 15-milliamp neurostimulation devices was shipped to São Paulo, Brazil, and the study will be conducted at the Instituto de Psiquiatria University Hospital (IPq-HCFMUSP). The shipments aim to support the launch of a Phase II clinical trial in adult patients suffering from anxiety and insomnia. The Nexalin Gen-2 15-milliamp neurostimulation device has also been approved in China, Brazil and Oman. Its Gen 1 device first received FDA clearance in 2003, according to the company's website.

The company also enrolled the first patients in its clinical trial at the University of California, San Diego, in collaboration with the VA San Diego Healthcare System for its Nexalin HALO, which looks to treat mild traumatic brain injury and post-traumatic stress disorder in military personnel and the civilian population.

Nexalin previously raised $5 million through a

public stock offering.
FibroBiologics has opened a new 10,000-square-foot Houston lab to scale up research efforts and pave the way for in-house manufacturing. Photo via Fibrobiologics.com

Houston regenerative medicine company expands lab for future trials

new digs

A Houston regenerative medicine company has unveiled new laboratory space with the goal of expanding its pioneering science.

FibroBiologics uses fibroblasts, the body’s most common type of cell, rather than stem cells, to help grow new cells. Fibroblasts are the primary variety of cells that compose connective tissue. FibroBiologics has found in studies that fibroblasts can be even more powerful than stem cells when it comes to both regeneration and immune modulation, meaning they could be a more versatile way forward in those fields.

In 2023, FibroBiologics moved into new lab space in the UH Technology Bridge. Now, with its new space, the publicly traded company, which has more than 240 patents issued or pending, will be even better equipped to power forward with its research.

The new space includes more than 10,000 square feet of space devoted to both labs and offices. The location is large enough to also house manufacturing drug product candidates that will be used in upcoming trials. Additionally, the company reports that it plans to hire additional researchers to help staff the facility.

“This expansion marks a transformative step forward for our company and our mission,” Pete O’Heeron, FibroBiologics founder and CEO, said in a news release. “By significantly increasing the size of our lab, we are creating the space and infrastructure needed to foster greater innovation and accelerate scientific breakthroughs.”

The streamlined, in-house manufacturing process will reduce the company’s reliance on external partners and make the supply chain simpler, O’Heeron added in the release.

Hamid Khoja, the chief scientific officer for FibroBiologics, also chimed in.

“To date, our progress in developing potentially transformative therapeutic candidates for chronic diseases using fibroblasts has been remarkable,” he added in the release. “This new laboratory facility will enable further expansion and acceleration of our research and development efforts. Additionally, the expansive new space will enable us to bring in-house currently outsourced projects, expand our science team and further contribute to the increased efficiency of our R&D efforts.”

This news arrives shortly after a milestone for the company in its research about neurodegenerative disease. Last month, fibroblast treatments in an animal model study demonstrated a notable regeneration of the myelin sheath, the layer that insulates nerves and is worn down by disease.

“Confirming remyelination in a second validated animal model is an important step in our research and development efforts, offering fresh hope for patients with demyelinating diseases, including multiple sclerosis,” O’Heeron added in a separate release. “These findings advance our mission to develop transformative fibroblast-based therapies that address the root causes of chronic disease, not just their symptoms, and reflect our dedication to pushing the frontiers of regenerative medicine."

Daniel Barvin has a neurodegenerative disease in his near future. He joined Houston-based Coya Therapeutics to help fight for a cure to the aggressively deadly ALS. Photo via Getty Images

How this Houston innovator is using his personal connection to ALS fuel his fight for a cure

guest column

We can never predict how our lives will turn out, but then maybe some of us can. Genetic testing showed that I, like my grandfather, aunt, uncle and father before me, would most likely die of amyotrophic lateral sclerosis, more commonly known as ALS, and/or frontotemporal degeneration (FTD) in my 40s.

Being 36, it’s possible that fear could have overtaken my life, but instead I chose to fight for every chance to change not only my life, but the lives of millions who are suffering or may one day suffer from neurodegenerative disease.

ALS is a rare disease that robs one of their ability to control their muscles, leading them to lose their ability to walk, talk and eventually breathe. Eighty percent of cases are sporadic (of unknown origin) and 20 percent have known genetic causes.

When I learned that I carried the C9ORF72 genetic variant, a causative genetic variant for ALS/FTD) my first instincts were to help others understand their status and where they could turn for help. I saw a vacuum for resources and understanding in the genetic ALS space and I knew that thousands were suffering in darkness.

Through the efforts of many, we created the first ever nonprofit – Genetic ALS & FTD: End the Legacy – focused on fighting for the genetic ALS and FTD communities. After making great strides to fight for our rights and access to care, I was asked if I could help my current CEO, Howard Berman, commercialize Dr. Stanley Appel’s regulatory T Cell (Treg) therapy for ALS.

I joined Coya Therapeutics in 2021 as the first employee, working to build a company that would one day bring life changing therapies to patients. Coya’s therapies are based on Dr. Appel’s discovery that neurodegenerative diseases drive an inflammatory response. As inflammation rises, it damages regulatory T cells, and when Tregs are damaged, inflammation becomes a persistent condition driving degeneration and eventually death.

It was at that point that my life changed from the advocacy world to the therapeutic world. Now over three years later, we are closer than ever to making a paradigm change for how patients with ALS and other neurodegenerative diseases are treated.

At Coya, we believe that combination biologics are the future of treating neurodegenerative diseases. COYA 302 is our lead asset, which has shown promising results in a proof-of-concept study released in March of 2023. We are currently working towards a double-blind, placebo-controlled trial for COYA 302 in ALS set to kick off later this year.

I never wanted to live a life so damned by disease, but when put between a rock and a hard place, the only choice is to fight. I don’t know how my life will end, but I hope that my children will know that I faced a great challenge head on with pride and resilience.

In the end, it is the combination of both the worlds I work in that lead to better outcomes for patients, raising awareness and lifesaving research. This ALS Awareness Month, please join us and our partners like the ALS Association, End the Legacy, and I AM ALS in raising awareness about these conditions, their risks, and treatment options.

------

Daniel Barvin is the vice president of operations and patient advocacy at Coya Therapeutics.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston energy trailblazer Fervo closes $462 million Series E

Fresh Funds

Houston-based geothermal energy company Fervo Energy has closed an oversubscribed $462 million series E funding round, led by new investor B Capital.

“Fervo is setting the pace for the next era of clean, affordable, and reliable power in the U.S.,” Jeff Johnson, general partner at B Capital, said in a news release.

“With surging demand from AI and electrification, the grid urgently needs scalable, always-on solutions, and we believe enhanced geothermal energy is uniquely positioned to deliver. We’re proud to support a team with the technical leadership, commercial traction, and leading execution capabilities to bring the world’s largest next-generation geothermal project online and make 24/7 carbon-free power a reality.”

The financing reflects “strong market confidence in Fervo’s opportunity to make geothermal energy a cornerstone of the 24/7 carbon-free power future,” according to the company. The round also included participation from Google, a longtime Fervo Partner, and other new and returning investors like Devon Energy, Mitsui & Co., Ltd., Mitsubishi Heavy Industries and Centaurus Capital. Centaurus Capital also recently committed $75 million in preferred equity to support the construction of Cape Station Phase I, Fervo noted in the release.

The latest funding will support the continued buildout of Fervo’s Utah-based Cape Station development, which is slated to start delivering 100 MW of clean power to the grid beginning in 2026. Cape Station is expected to be the world's largest next-generation geothermal development, according to Fervo. The development of several other projects will also be included in the new round of funding.

“This funding sharpens our path from breakthrough technology to large-scale deployment at Cape Station and beyond,” Tim Latimer, CEO and co-founder of Fervo, added in the news release. “We’re building the clean, firm power fleet the next decade requires, and we’re doing it now.”

Fervo recently won Scaleup of the Year at the 2025 Houston Innovation Awards, and previously raised $205.6 million in capital to help finance the Cape Station earlier this year. The company fully contracted the project's capacity with the addition of a major power purchase agreement from Shell this spring. Fervo’s valuation has been estimated at $1.4 billion and includes investments and support from Bill Gates.

“This new investment makes one thing clear: the time for geothermal is now,” Latimer added in a LinkedIn post. “The world desperately needs new power sources, and with geothermal, that power is clean and reliable. We are ready to meet the moment, and thrilled to have so many great partners on board.”

---

This article originally appeared on EnergyCapitalHTX.com.

Baylor center receives $10M NIH grant to continue rare disease research

NIH funding

Baylor College of Medicine’s Center for Precision Medicine Models received a $10 million, five-year grant from the National Institutes of Health last month that will allow it to continue its work studying rare genetic diseases.

The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments.

The center was originally funded by an NIH grant, and its models have contributed to the discovery of several new rare disease genes and new symptoms caused by known disease genes. It hosts an online portal that allows physicians, families and advocacy groups to nominate genetic variants or rare diseases that need further investigation or new treatments.

Since its founding in 2020, it has received 156 disease/variant nominations, accepted 63 for modeling and produced more than 200 precision models, according to Baylor.

The center plans to use the latest round of funding to bring together more experts in rare disease research, animal modeling and bioinformatics, and to expand its focus and model more complex diseases.

Dr. Jason Heaney, associate professor in the Department of Molecular and Human Genetics at BCM, serves as the lead principal investigator of the center.

“The Department of Molecular and Human Genetics is uniquely equipped to bring together the diverse expertise needed to connect clinical human genetics, animal research and advanced bioinformatics tools,” Heaney added in the release. “This integration allows us to drive personalized medicine forward using precision animal models and to turn those discoveries into better care for patients.”

Houston institutions launch Project Metis to position region as global leader in brain health

brain trust

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health."

The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT).

According to organizers, initial plans for Project Metis include:

  • Creating working teams focused on brain health across all life stages, science and medical advances, and innovation and commercialization
  • Developing a regional Brain Health Index to track progress and equity
  • Implanting pilot projects in areas such as clinical care, education and workplace wellness
  • Sharing Houston’s progress and learnings at major international forums, including Davos and the UN General Assembly

The initiative will be chaired by:

  • Founding Chair: Dr. Jochen Reiser, President of UTMB and CEO of the UTMB Health System
  • Project Chair: Amy Dittmar, Howard R. Hughes Provost and Executive Vice President of Rice University
  • Project Chair: Dr. David L. Callender, President and CEO of Memorial Hermann Health System

The leaders will work with David Gow, Center for Houston’s Future president and CEO. Gow is the founder and chairman of Gow Media, InnovationMap's parent company.

“Now is exactly the right time for Project Metis and the Houston-Galveston Region is exactly the right place,” Gow said in a news release. “Texas voters, by approving the state-funded Dementia Prevention Institute, have shown a strong commitment to brain health, as scientific advances continue daily. The initiative aims to harness the Houston’s regions unique strengths: its concentration of leading medical and academic institutions, a vibrant innovation ecosystem, and a history of entrepreneurial leadership in health and life sciences.”

Lime Rock Resources, BP and The University of Texas MD Anderson Cancer Center served as early steering members for Project Metis. HKS, Houston Methodist and the American Psychiatric Association Foundation have also supported the project.

An estimated 460,000 Texans are living with dementia, according to the Alzheimer’s Association, and more than one million caregivers support them.

“Through our work, we see both the immense human toll of brain-related illness and the tremendous potential of early intervention, coordinated care and long-term prevention," Callender added in the release. "That’s why this bold new initiative matters so much."