Re:3D has moved onto the next phase of a NSF program focused on circular economy innovation. Photo via re3d.org

An innovative project led by Houston-founded re:3D Inc. is one of six to move forward to the next phase of the National Science Foundation's Convergence Accelerator that aims to drive solutions with societal and economic impact.

The sustainable 3D printer company will receive up to $5 million over three years as it advances on to Phase 2 of the program for its ReCreateIt project, according to a statement from the NSF. Co-funded by Australia's national science agency, the Commonwealth Scientific and Industrial Research Organisation, or CSIRO, ReCreateIt enables low-income homeowners to design sustainable home goods using recycled plastic waste through 3D-printing at its net-zero manufacturing lab.

The project is in partnership with Austin Habitat for Humanity ReStores and researchers from the University of Wollongong and Western Sydney University. CSIRO is funding the Australian researchers.

In Phase II the teams will receive training on product development, intellectual property, financial resources, sustainability planning and communications and outreach. The goal of the accelerator is to promote a "circular economy," in which resources are reused, repaired, recycled or refurbished for as long as possible.

"Progress toward a circular economy is vital for our planet's health, but it is a complex challenge to tackle," Douglas Maughan, head of the NSF Convergence Accelerator program, said in the statement. "The NSF Convergence Accelerator program is bringing together a wide range of expertise to develop critical, game-changing solutions to transition toward a regenerative growth model that reduces pressure on natural resources, creates sustainable growth and jobs, drastically reduces waste and ultimately has a positive impact on our environment and society. Phase 2 teams are expected to have strong partnerships to ensure their solutions are sustained beyond NSF support."

Other teams that are moving forward in the accelerator include:

  • FUTUR-IC: A global microchip sustainability alliance led by MIT
  • PFACTS: Led by IBM's Almaden Research Center and aiming to replace, redesign and remediate fluorine-containing per- and polyfluoroalkyl substances (PFAS)
  • SOLAR: A team led by Battelle Memorial Institute using photovoltaic circularity to develop the technology needed to achieve sustainable solar recycling
  • SpheriCity: A cross-sector tool that examines how plastics, organics and construction and demolition materials flow through local communities developed by the University of Georgia Research Foundation Inc.
  • Topological Electric: Another MIT-led team, this group aims to develop electronic and energy-harvesting device prototypes based on topological materials.

Re:3d and 15 other teams were first named to the Convergence Accelerator in 2022 with a total investment of $11.5 million. At the end of Phase 1, the teams participated in a formal Phase 2 proposal and pitch, according to the NSF. The Convergence Accelerator was launched in 2019 as part of the NSF's Directorate for Technology, Innovation and Partnerships.

This is the latest project from re:3D to land national attention and funding. Last year the company was one of 12 to receive up to $850,000 from NASA's SBIR Ignite pilot for its project that aimed to develop a recycling system that uses a 3D printer to turn thermoplastic waste generated in orbit into functional and useful objects, according to the project's proposal.

In 2022, it was also among the winners of an inaugural seed fund expo from the U.S. Small Business Administration. It also earned the prestigious Tibbetts Award from the SBA in 2021. The award honors small businesses that are at the forefront of technology.

Re:3D Inc. was founded in 2013 by NASA contractors Samantha Snabes and Matthew Fiedler and is based in Clear Lake. It's known for its GigaBot 3D printer, which uses recycled materials to create larger devices. The company announced its new Austin headquarters earlier this year.
At an event at the Ion, OpenStax and Rice University announced a $90 million NSF-backed initiative. Photo by Jeff Fitlow/Rice

Rice University's edtech company receives $90M to lead NSF research hub

major collaboration

An educational technology company based out of Rice University has received $90 million to create and lead a research and development hub for inclusive learning and education research. It's the largest research award in the history of the university.

OpenStax received the grant funding from the U.S. National Science Foundation for a five-year project create the R&D hub called SafeInsights, which "will enable extensive, long-term research on the predictors of effective learning while protecting student privacy," reads a news release from Rice. It's the NSF's largest single investment commitment to national sale education R&D infrastructure.

“We are thrilled to announce an investment of $90 million in SafeInsights, marking a significant step forward in our commitment to advancing scientific research in STEM education,” NSF Director Sethuraman Panchanathan says in the release. “There is an urgent need for research-informed strategies capable of transforming educational systems, empowering our nation’s workforce and propelling discoveries in the science of learning.

"By investing in cutting-edge infrastructure and fostering collaboration among researchers and educators, we are paving the way for transformative discoveries and equitable opportunities for learners across the nation.”

SafeInsights is funded through NSF’s Mid-scale Research Infrastructure-2 (Mid-scale RI-2) program and will act as a central hub for 80 partners and collaborating institutions.

“SafeInsights represents a pivotal moment for Rice University and a testament to our nation’s commitment to educational research,” Rice President Reginald DesRoches adds. “It will accelerate student learning through studies that result in more innovative, evidence-based tools and practices.”

Richard Baraniuk, who founded OpenStax and is a Rice professor, will lead SafeInsights. He says he hopes the initiative will allow progress to be made for students learning in various contexts.

“Learning is complex," Baraniuk says in the release. "Research can tackle this complexity and help get the right tools into the hands of educators and students, but to do so, we need reliable information on how students learn. Just as progress in health care research sparked stunning advances in personalized medicine, we need similar precision in education to support all students, particularly those from underrepresented and low-income backgrounds.”

OpenStax awarded $90M to lead NSF research hub for transformational learning and education researchwww.youtube.com

The $2.5 million in NSF funding will allow Rice to increase the number of students in the Rice Emerging Scholars Program. Photo via rice.edu

Houston university lands $2.5M grant to expand STEM scholarship program for underserved communities

evolving inclusivity

Rice University will expand its Rice Emerging Scholars Program (RESP) over the next two years thanks to a recent grant from the National Science Foundation.

The $2.5 million in NSF funding will allow Rice to increase the number of scholars the RESP offers from 40 to 50 students this summer and to 60 students in 2025. The program works to address disparities among first-year students and to "assist students in adapting to the challenging pace, depth and rigor of the STEM curricula at Rice" through a six-week summer bridge program and ongoing mentorship, according to a statement from the university. Summer tuition scholarships, housing subsidies and research stipends are also provided.

Rice estimates that roughly 20 percent of its undergraduate population comes from families with limited financial resources, and 12 percent of students are the first in their families to attend college.

“Low-income students, especially those who are first-generation, face unique obstructions to pursuing college STEM degrees,” said Senior associate provost Matthew Taylor, a co-principal investigator on the grant. “RESP and Rice University are committed to eliminating these obstructions and ensuring that all students have the opportunity to thrive and achieve their academic and professional aspirations.”

Taylor created the program with Professor Emeritus of Mathematics Mike Wolf in 2012. It has since worked with more than 400 RESP scholars, according to the program's website. Most (about 79 percent) graduate with STEM degrees and an overwhelming 90 percent of RESP scholars graduate in four years, according to recent data.

“Rice recognizes the challenges faced by students from low-income backgrounds,” Angel Martí, chair and professor of chemistry, faculty director of RESP and principal investigator of the grant, said in a statement. “RESP aims to empower these students to achieve their academic and professional aspirations as future scientists and engineers.”

Earlier this year, the NSF also awarded Rice assistant professor Amanda Marciel $670,406 through its highly competitive CAREER Awards to continue her research in designing branch elastomers.

Marciel was also named to the 2024 cohort of Rice Innovation Fellows through the university's Office of Innovation and The Liu Idea Lab for Innovation and Entrepreneurship (or Lilie). The group includes 10 Ph.D. and postdoctoral students who aim to translate research into real-world startups.
The UH team is developing ways to use machine learning to ensure that power systems can continue to run efficiently when pulling their energy from wind and solar sources. Photo via Getty Images

Houston researcher scores prestigious NSF award for machine learning, power grid tech

grant funding

An associate professor at the University of Houston received the highly competitive National Science Foundation CAREER Award earlier this month for a proposal focused on integrating renewable resources to improve power grids.

The award grants more than $500,000 to Xingpeng Li, assistant professor of electrical and computer engineering and leader of the Renewable Power Grid Lab at UH, to continue his work on developing ways to use machine learning to ensure that power systems can continue to run efficiently when pulling their energy from wind and solar sources, according to a statement from UH. This work has applications in the events of large disturbances to the grid.

Li explains that currently, power grids run off of converted, stored kinetic energy during grid disturbances.

"For example, when the grid experiences sudden large generation losses or increased electrical loads, the stored kinetic energy immediately converted to electrical energy and addressed the temporary shortfall in generation,” Li said in a statement. “However, as the proportion of wind and solar power increases in the grid, we want to maximize their use since their marginal costs are zero and they provide clean energy. Since we reduce the use of those traditional generators, we also reduce the power system inertia (or stored kinetic energy) substantially.”

Li plans to use machine learning to create more streamlined models that can be implemented into day-ahead scheduling applications that grid operators currently use.

“With the proposed new modeling and computational approaches, we can better manage grids and ensure it can supply continuous quality power to all the consumers," he said.

In addition to supporting Li's research and model creations, the funds will also go toward Li and his team's creation of a free, open-source tool for students from kindergarten up through their graduate studies. They are also developing an “Applied Machine Learning in Power Systems” course. Li says the course will help meet workforce needs.

The CAREER Award recognizes early-career faculty members who “have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization,” according to the NSF. It's given to about 500 researchers each year.

Earlier this year, Rice assistant professor Amanda Marciel was also

granted an NSF CAREER Award to continue her research in designing branch elastomers that return to their original shape after being stretched. The research has applications in stretchable electronics and biomimetic tissues.

------

This article originally ran on EnergyCapital.

The NIH grant goes toward TransplantAI's work developing more precise models for heart and lung transplantation. Photo via Getty Images

Houston health tech company scores $2.2M grant to use AI to make organ transplants smarter, more successful

future of medicine

The National Institute of Health has bestowed a Houston medtech company with a $2.2 million Fast-Track to Phase 2 award. InformAI will use the money for the product development and commercialization of its AI-enabled organ transplant informatics platform.

Last year, InformAI CEO Jim Havelka told InnovationMap, “A lot of organs are harvested and discarded.”

TransplantAI solves that problem, as well as organ scarcity and inefficiency in allocation of the precious resource.

How does it work? Machine learning and deep learning from a million donor transplants informs the AI, which determines who is the best recipient for each available organ using more than 500 clinical parameters. Organ transplant centers and organ procurement organizations (OPOs) will be able to use the product to make a decision on how to allocate each organ in real time. Ultimately, the tool will service 250 transplant centers and 56 OPOs around the United States.

The NIH grant goes toward developing more precise models for heart and lung transplantation (kidney and liver algorithms are further along in development thanks to a previous award from the National Science Foundation), as well as Phase 2 efforts to fully commercialize TransplantAI.

"There is an urgent need for improved and integrated predictive clinical insights in solid organ transplantation, such as for real-time assessment of waitlist mortality and the likelihood of successful post-transplantation outcomes," according to the grant’s lead clinical investigator, Abbas Rana, associate professor of surgery at Baylor College of Medicine.

“This information is essential for healthcare teams and patients to make informed decisions, particularly in complex cases where expanded criteria allocation decisions are being considered," Rana continues. "Currently, the separation of donor and recipient data into different systems requires clinical teams to conduct manual, parallel reviews for pairing assessments. Our team, along with those at other leading transplant centers nationwide, receives hundreds of organ-recipient match offers weekly.”

Organ transplantation is moving into the future, and Transplant AI is at the forefront.

A team from the University of Houston received a grant to continue its work on using AI and digital twin technology to better evaluate bridges in Texas. Photo via uh.edu

Houston professor earned $500,000 grant to tap into digital twin tech for bridge safety

transportation innovation

A University of Houston professor has received a grant from the Texas Department of Transportation (TxDOT) to improve the efficiency and effectiveness of how bridges are inspected in the state.

The $505,286 grant will support the project of Vedhus Hoskere, assistant professor in the Civil and Environmental Engineering Department, over three years. The project, “Development of Digital Twins for Texas Bridges,” will look at how to use drones, cameras, sensors and AI to support Texas' bridge maintenance programs.

“To put this data in context, we create a 3D digital representation of these bridges, called digital twins,” Hoskere said in a statement. “Then, we use artificial intelligence methods to help us find and quantify problems to be concerned about. We’re particularly interested in any structural problems that we can identify - these digital twins help us monitor changes over time and keep a close eye on the bridge. The digital twins can be tremendously useful for the planning and management of our aging bridge infrastructure so that limited taxpayer resources are properly utilized.”

The project began in September and will continue through August 2026. Hoskere is joined on the project by Craig Glennie, the Hugh Roy and Lillie Cranz Cullen Distinguished Chair at Cullen College and director of the National Center for Airborne Laser Mapping, as the project’s co-principal investigator.

According to Hoskere, the project will have implications for Texas's 55,000 bridges (more than twice as many as any other state in the country), which need to be inspected every two years.

Outside of Texas, Hoskere says the project will have international impact on digital twin research. Hoskere chairs a sub-task group of the International Association for Bridge and Structural Engineering (IABSE).

“Our international efforts align closely with this project’s goals and the insights gained globally will enhance our work in Texas while our research at UH contributes to advancing bridge digitization worldwide,” he said. “We have been researching developing digital twins for inspections and management of various infrastructure assets over the past 8 years. This project provides us an opportunity to leverage our expertise to help TxDOT achieve their goals while also advancing the science and practice of better developing these digital twins.”

Last year another UH team earned a $750,000 grant from the National Science Foundation for a practical, Texas-focused project that uses AI. The team was backed by the NSF's Convergence Accelerator for its project to help food-insecure Texans and eliminate inefficiencies within the food charity system.

UH Professor Vedhus Hoskere received a three-year, $505,286 grant from TxDOT for a bridge digitization project. Photo via uh.edu

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston companies score big on annual Fortune 500 ranking

by the numbers

Fourteen businesses with global or regional headquarters in the Houston area appear on Fortune’s new list of the world’s 500 biggest companies.

Oil and gas company Saudi Aramco, whose headquarters for the Americas is in Houston, leads the Houston-area pack. With annual revenue of $494.9 billion, it lands at No. 4 on the Fortune Global 500. Ahead of Saudi Aramco are U.S. retailers Walmart and Amazon, and Chinese electric company State Grid.

To put Saudi Aramco’s annual revenue in perspective, the total is slightly above the gross domestic product for the Philippines.

For the third year in a row, Saudi Aramco stands out as the most profitable member of the Fortune Global 500. The company racked up $121 billion in profit last year.

Overall, Saudi Aramco and 32 other petroleum refiners — many of them with a significant presence in the Houston area — made the Fortune Global 500.

“The Global 500 is the ultimate scorecard for business success. The aggregate revenue of the Fortune Global 500 in 2023 reached $41 trillion, a record level. That sum represents more than a third of global GDP — a sign of how much economic power is concentrated in these companies,” Scott DeCarlo, Fortune’s vice president of research, says in a news release.

Here’s the rundown of Fortune Global 500 companies with global or regional headquarters in the Houston area, including the ranking and annual revenue for each:

  • Saudi Aramco, No. 4, $494.9 billion, Americas headquarters in Houston
  • ExxonMobil, No. 12, $344.6 billion, global headquarters in Spring
  • Shell, No. 13, $323.2 billion; U.S. headquarters in Houston
  • TotalEnergies, No. 23, $218.9 billion, U.S. headquarters in Houston
  • BP, No. 25, $213 billion, U.S. headquarters in Houston
  • Chevron, No. 29, $200.9 billion, global headquarters relocating to Houston in 2024
  • Phillips 66, No. 52, $149.9 billion, global headquarters in Houston
  • Engie, No. 130, $89.3 billion, North American headquarters in Houston
  • Sysco, No. 163, $76.3 billion, global headquarters in Houston
  • ConocoPhillips, No. 235, $58.6 billion, global headquarters in Houston
  • Enterprise Products Partners, No. 303, $49.7 billion, global headquarters in Houston
  • Plains GP Holdings, No. 311, $48.7 billion, global headquarters in Houston
  • LyondellBasell, No. 368, $41.1 billion, global headquarters in Houston
  • SLB (formerly Schlumberger), No. 479, $33.1 billion, global headquarters in Houston

Fortune uses revenue figures for budget years ending on or before March 31, 2024, to rank the world’s largest companies.

------

This article originally ran on EnergyCapital.

Why this Houston medical device innovator is pumped up for the first total artificial heart

HOUSTON INNOVATORS PODCAST EPISODE 248

It's hard to understate the impact Dr. William Cohn has had on cardiovascular health as a surgeon at the Texas Heart Institute or on health care innovation as the director of the Center for Device Innovation at the Texas Medical Center. However, his role as chief medical officer of BiVACOR might be his most significant contribution to health care yet.

The company's Total Artificial Heart is unlike any cardiovascular device that's existed, Cohn explains on the Houston Innovators Podcast. While most devices are used temporarily for patients awaiting a heart transplant, BiVACOR's TAH has the potential to be a permanent solution for the 200,000 patients who die of heart failure annually. Last year, only around 4,000 patients were able to receive heart transplants.

"Artificial hearts historically have had bladders that ejected and filled 144,000 times a day. They work great for temporary support, but no one is suggesting they are permanent devices," Cohn says on the show.

The difference with BiVACOR's device is it abandons the bladder approach. Cohn explains that as assist pumps evolved — something his colleague, Dr. Bud Frasier, had a huge impact on — they featured new turbine and rotor technology. Daniel Timms, BiVACOR's founder and CTO, iterated on this technology beginning when he was a postdoctoral student at Queensland University of Technology in Australia.

"BiVACOR is the first artificial heart that leverages what we learned from that whole period — it has no bladders, it has no valves. It has one moving part, and that moving part is suspended in an electromagnetic field controlled by a computer and changed thousands of times a second," Cohn says. "It will never wear out, and that's why we think it's the world's first total artificial heart."

The company is seeing momentum, celebrating its first successful human implantation last month. The device was used for eight days on a patient at Baylor St. Luke’s Medical Center before the patient received a heart transplant.

Cohn says that BiVACOR has plans to use the TAH as "bridge-to-transplant" device in several other surgeries and expects to get FDA approval for that purpose in the next three to four years before working toward clearance for total artificial heart transplants.

Cohn has worked to support medical device startups at CDI at TMC for the seven years it has existed — first under Johnson and Johnson and then under TMC when it took the program over. He describes the center and its location as the ideal place for developing the future of health care, with Houston rising up to compete with regions known for medical device success — both coasts and Minnesota.

"Being in the shadow of the largest medical center on the planet — 106,000 employees show up there every 24 hours," Cohn says, "if you want to innovate, this is the place to do it."

2 Houston companies collaborating to develop lunar rideshare services

need a ride?

Houston-based space exploration company Intuitive Machines soon will be the Uber of space.

Intuitive Machines has signed a deal with Houston-based launch services company SEOPS to offer lunar rideshare services. Under the deal, Intuitive Machines will enable SEOPS to deliver customers' payloads to the surface of the moon, as well as to Lagrange points and geostationary transfer orbits. Essentially, this will let SEOPS hitch a ride on missions already planned by Intuitive Machines.

As NASA explains, spacecraft occupy Lagrange points between the earth and moon as “parking lots” so they can stay in a fixed position while conserving fuel. And according to the European Space Agency, transfer orbits “are a special kind of orbit used to get from one orbit to another.”

“Intuitive Machines’ rideshare capacity not only satisfies a growing market need, but it’s completely in our wheelhouse — leveraging our expertise in solving complex launch challenges for our customers,” Chad Brinkley, CEO of SEOPS, says in a news release. “It makes financial sense to take advantage of the excess capacity on Intuitive Machines’ lunar missions, while also supporting our customers' goals for lunar exploration.”

Intuitive Machines CEO Steve Altemus says the SEOPS deal underscores the aspirations of the space industry.

“SEOPS entrusting us with the delivery of its customers’ payloads to space highlights our capabilities to provide the essential infrastructure and services that support all groundbreaking commercial ambitions in space,” Altemus says.

Speaking of groundbreaking developments, Intuitive Machines recently pinned down a landing site for its sold-out mission to the South Pole. The mission will prospect for water ice.

NASA calls water ice “a valuable resource” for exploration of the moon, as it could provide drinking water, cool equipment, and generate fuel and oxygen.

The more than 650-foot-in-diameter South Pole landing site, chosen by Intuitive Machines and NASA, sits on the Shackleton connecting ridge. The ridge connects two craters.

NASA says the Shackleton ridge receives enough sunlight to power a lander for a roughly 10-day mission while offering a clear line of sight for satellite communications.

The mission, featuring an Intuitive Machines lander and NASA ice-mining equipment, is set for late 2024. The work must take place between November 2024 and January 2025 to capitalize on ideal conditions.

“A sold-out commercial and civil government mission early in our commercialization roadmap validates our approach to supporting an economy in deep space,” Altemus says in a news release. “Our expertise in landing site selection is world-class, and we believe the ability to identify landing areas with valuable resources will be essential to the future of the lunar economy.”