HEXAspec, founded by Tianshu Zhai and Chen-Yang Lin, has been awarded an NSF Partnership for Innovation grant. Photo courtesy of Rice

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

UH physics professor Donna Stokes and Allison Master, an assistant professor in the UH College of Education, were recognized by the Biden Administration for excellence in STEM fields. Photos courtesy UH.

2 Houston professors earn prestigious presidential awards for excellence in STEM

Big Wins

Allison Master, an assistant professor at the University of Houston, is the first from the college to be awarded the Presidential Early Career Award for Scientists and Engineers.

Master, who works in the Department of Psychological, Health and Learning Sciences at the UH College of Education, is one of 400 scientists and engineers to receive the honor from the Biden administration. The award recognizes those who “show exceptional potential for leadership early in their research careers,” according to a statement.

“This award speaks volumes about Allison’s dedication, ingenuity and innovation in educational sciences,” Diane Z. Chase, UH senior vice president for academic affairs and provost, said in a news release. “Her groundbreaking work embodies the university’s commitment to advancing knowledge, fostering equity in education and shaping a brighter future for students and educators alike.”

Master’s research in the Identity and Academic Motivation Lab at UH involves how societal stereotypes contribute to gender gaps in motivation to pursue STEM. Her study also explored ways to counter the stereotypes through educational strategies that make students feel that they belong, what drives children’s interest in STEM and the role of social connections. Her efforts resulted in millions of dollars in grants from the U.S. Department of Education’s Institute of Education Sciences, the National Science Foundation, and other organizations, according to UH.

Established by President Bill Clinton in 1996, PECASE recognizes innovative and far-reaching developments in science and technology, expands awareness of careers in STEM fields, enhances connections between research and its impacts on society, and highlights the importance of science and technology for our nation’s future.

“This is something that was on my radar, sort of like a ‘pie in the sky’ dream that it would be amazing to win it, but I didn’t know if it could ever be possible,” Master said. “I am very grateful to the University of Houston for providing such a supportive environment for innovation, collaboration and meaningful research that made this achievement possible.”

In addition to Master’s honor, the White House also recently recognized UH physics professor Donna Stokes for outstanding mentoring in STEM disciplines with the Presidential Awards for Excellence in Science, Mathematics and Engineering Mentoring.

Stokes’ previous awards include the UH Teaching Excellence Award, the 2023 UH Honors College Outstanding Fellowship Mentorship Award, the 2011 UH Provost Academic Advising and Mentoring Award, a National Science Foundation Career Award, and a National Research Council Post-Doctoral Associateship Award. The National Science Foundation manages the PAESMEM awards, and the White House Office of Science and Technology Policy selects honorees.

PAESMEM award recipients will receive $10,000 and the opportunity to attend professional development events in Washington, D.C.

“Spotlighting STEM educators, researchers and mentors is important to demonstrate the critical role they play in developing and encouraging students to pursue STEM degrees and careers,” Stokes said in a news release. “It is imperative to have STEM educators who can foster the next generation of scientists to address local and national scientific challenges.”
The WaTER Institute is housed in Rice University's Ralph S. O'Connor Building. Photo via Rice.edu

Rice University harnesses nanotech to revolutionize clean water access

getting clean

Researchers at Rice University are making cleaner water through the use of nanotech.

Decades of research have culminated in the creation of the Water Technologies Entrepreneurship and Research (WaTER) Institute launched in January 2024 and its new Rice PFAS Alternatives and Remediation Center (R-PARC).

“Access to safe drinking water is a major limiting factor to human capacity, and providing access to clean water has the potential to save more lives than doctors,” Rice’s George R. Brown Professor of Civil and Environmental Engineering Pedro Alvarez says in a news release.

The WaTER Institute has made advancements in clean water technology research and applications established during a 10-year period of Nanotechnology Enabled Water Treatment (NEWT), which was funded by the National Science Foundation. R-PARC will use the institutional investments, which include an array of PFAS-dedicated advanced analytical equipment.

Alvarez currently serves as director of NEWT and the WaTER Institute. He’s joined by researchers that include Michael Wong, Rice’s Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and leader of the WaTER Institute’s public health research thrust, and James Tour, Rice’s T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering.

“We are the leaders in water technologies using nano,” adds Wong. “Things that we’ve discovered within the NEWT Center, we’ve already started to realize will be great for real-world applications.”

The NEWT center plans to equip over 200 students to address water safety issues, and assist/launch startups.

“Across the world, we’re seeing more serious contamination by emerging chemical and biological pollutants, and climate change is exacerbating freshwater scarcity with more frequent droughts and uncertainty about water resources,” Alvarez said in a news release. “The Rice WaTER Institute is growing research and alliances in the water domain that were built by our NEWT Center.”

OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models to support storm response decision makers, has secured an NSF grant. Photo by Eric Turnquist

Houston-area researchers score $1.5M grant to develop storm response tech platform

fresh funding

Researchers from Rice University have secured a $1.5 million grant from the National Science Foundation to continue their work on improving safety and resiliency of coastal communities plagued by flooding and hazardous weather.

The Rice team of engineers and collaborators includes Jamie Padgett, Ben Hu, and Avantika Gori along with David Retchless at Texas A&M University at Galveston. The researchers are working in collaboration with the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center and the Ken Kennedy Institute at Rice and A&M-Galveston’s Institute for a Disaster Resilient Texas.

Together, the team is developing and hopes to deploy “Open-Source Situational Awareness Framework for Equitable Multi-Hazard Impact Sensing using Responsible AI,” or OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models "to provide timely, reliable and equitable insights to emergency response organizations and communities before, during and after tropical cyclones and coastal storm events," reads a news release from Rice.

“Our goal with this project is to enable communities to better prepare for and navigate severe weather by providing better estimates of what is actually happening or might happen within the next hours or days,” Padgett, Rice’s Stanley C. Moore Professor in Engineering and chair of the Department of Civil and Environmental Engineering, says in the release. “OpenSafe.AI will take into account multiple hazards such as high-speed winds, storm surge and compound flooding and forecast their potential impact on the built environment such as transportation infrastructure performance or hazardous material spills triggered by severe storms.”

OpenSafe.AI platform will be developed to support decision makers before, during, and after a storm.

“By combining cutting-edge AI with a deep understanding of the needs of emergency responders, we aim to provide accurate, real-time information that will enable better decision-making in the face of disasters,” adds Hu, associate professor of computer science at Rice.

In the long term, OpenSafe.AI hopes to explore how the system can be applied to and scaled in other regions in need of equitable resilience to climate-driven hazards.

“Our goal is not only to develop a powerful tool for emergency response agencies along the coast but to ensure that all communities ⎯ especially the ones most vulnerable to storm-induced damage ⎯ can rely on this technology to better respond to and recover from the devastating effects of coastal storms,” adds Gori, assistant professor of civil and environmental engineering at Rice.

------

This article originally ran on EnergyCapital.

Re:3D has moved onto the next phase of a NSF program focused on circular economy innovation. Photo via re3d.org

Houston 3D printing co. moves forward to next phase of NSF accelerator

sustainability in mind

An innovative project led by Houston-founded re:3D Inc. is one of six to move forward to the next phase of the National Science Foundation's Convergence Accelerator that aims to drive solutions with societal and economic impact.

The sustainable 3D printer company will receive up to $5 million over three years as it advances on to Phase 2 of the program for its ReCreateIt project, according to a statement from the NSF. Co-funded by Australia's national science agency, the Commonwealth Scientific and Industrial Research Organisation, or CSIRO, ReCreateIt enables low-income homeowners to design sustainable home goods using recycled plastic waste through 3D-printing at its net-zero manufacturing lab.

The project is in partnership with Austin Habitat for Humanity ReStores and researchers from the University of Wollongong and Western Sydney University. CSIRO is funding the Australian researchers.

In Phase II the teams will receive training on product development, intellectual property, financial resources, sustainability planning and communications and outreach. The goal of the accelerator is to promote a "circular economy," in which resources are reused, repaired, recycled or refurbished for as long as possible.

"Progress toward a circular economy is vital for our planet's health, but it is a complex challenge to tackle," Douglas Maughan, head of the NSF Convergence Accelerator program, said in the statement. "The NSF Convergence Accelerator program is bringing together a wide range of expertise to develop critical, game-changing solutions to transition toward a regenerative growth model that reduces pressure on natural resources, creates sustainable growth and jobs, drastically reduces waste and ultimately has a positive impact on our environment and society. Phase 2 teams are expected to have strong partnerships to ensure their solutions are sustained beyond NSF support."

Other teams that are moving forward in the accelerator include:

  • FUTUR-IC: A global microchip sustainability alliance led by MIT
  • PFACTS: Led by IBM's Almaden Research Center and aiming to replace, redesign and remediate fluorine-containing per- and polyfluoroalkyl substances (PFAS)
  • SOLAR: A team led by Battelle Memorial Institute using photovoltaic circularity to develop the technology needed to achieve sustainable solar recycling
  • SpheriCity: A cross-sector tool that examines how plastics, organics and construction and demolition materials flow through local communities developed by the University of Georgia Research Foundation Inc.
  • Topological Electric: Another MIT-led team, this group aims to develop electronic and energy-harvesting device prototypes based on topological materials.

Re:3d and 15 other teams were first named to the Convergence Accelerator in 2022 with a total investment of $11.5 million. At the end of Phase 1, the teams participated in a formal Phase 2 proposal and pitch, according to the NSF. The Convergence Accelerator was launched in 2019 as part of the NSF's Directorate for Technology, Innovation and Partnerships.

This is the latest project from re:3D to land national attention and funding. Last year the company was one of 12 to receive up to $850,000 from NASA's SBIR Ignite pilot for its project that aimed to develop a recycling system that uses a 3D printer to turn thermoplastic waste generated in orbit into functional and useful objects, according to the project's proposal.

In 2022, it was also among the winners of an inaugural seed fund expo from the U.S. Small Business Administration. It also earned the prestigious Tibbetts Award from the SBA in 2021. The award honors small businesses that are at the forefront of technology.

Re:3D Inc. was founded in 2013 by NASA contractors Samantha Snabes and Matthew Fiedler and is based in Clear Lake. It's known for its GigaBot 3D printer, which uses recycled materials to create larger devices. The company announced its new Austin headquarters earlier this year.
At an event at the Ion, OpenStax and Rice University announced a $90 million NSF-backed initiative. Photo by Jeff Fitlow/Rice

Rice University's edtech company receives $90M to lead NSF research hub

major collaboration

An educational technology company based out of Rice University has received $90 million to create and lead a research and development hub for inclusive learning and education research. It's the largest research award in the history of the university.

OpenStax received the grant funding from the U.S. National Science Foundation for a five-year project create the R&D hub called SafeInsights, which "will enable extensive, long-term research on the predictors of effective learning while protecting student privacy," reads a news release from Rice. It's the NSF's largest single investment commitment to national sale education R&D infrastructure.

“We are thrilled to announce an investment of $90 million in SafeInsights, marking a significant step forward in our commitment to advancing scientific research in STEM education,” NSF Director Sethuraman Panchanathan says in the release. “There is an urgent need for research-informed strategies capable of transforming educational systems, empowering our nation’s workforce and propelling discoveries in the science of learning.

"By investing in cutting-edge infrastructure and fostering collaboration among researchers and educators, we are paving the way for transformative discoveries and equitable opportunities for learners across the nation.”

SafeInsights is funded through NSF’s Mid-scale Research Infrastructure-2 (Mid-scale RI-2) program and will act as a central hub for 80 partners and collaborating institutions.

“SafeInsights represents a pivotal moment for Rice University and a testament to our nation’s commitment to educational research,” Rice President Reginald DesRoches adds. “It will accelerate student learning through studies that result in more innovative, evidence-based tools and practices.”

Richard Baraniuk, who founded OpenStax and is a Rice professor, will lead SafeInsights. He says he hopes the initiative will allow progress to be made for students learning in various contexts.

“Learning is complex," Baraniuk says in the release. "Research can tackle this complexity and help get the right tools into the hands of educators and students, but to do so, we need reliable information on how students learn. Just as progress in health care research sparked stunning advances in personalized medicine, we need similar precision in education to support all students, particularly those from underrepresented and low-income backgrounds.”

OpenStax awarded $90M to lead NSF research hub for transformational learning and education researchwww.youtube.com

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

NASA signs on latest tenant for new Exploration Park campus, now underway

space hub

Exploration Park, the 240-acre research and commercial institute at NASA's Johnson Space Center, is ready for launch.

Facilities at the property have broken ground, according to a recent episode of NASA's Houston We Have a Podcast, with a completion date targeted for Q4 2026.

The research park has also added Houston-based KBR to its list of tenants. According to a news release from the Greater Houston Partnership, the human spaceflight and aerospace services company will operate a 45,000-square-foot food innovation lab at Exploration Park. KBR will use the facility to focus on customized food systems, packaging and nutrition for the low Earth orbit economy.

“Exploration Park is designed for companies in the space ecosystem, such as KBR, to develop, produce, and deploy innovative new technologies that support space exploration and commerce,” Simon Shewmaker, head of development at ACMI Properties, the developer behind Exploration Park, said in the GHP release. “This project is moving expeditiously, and we’re thrilled to sign such an innovative partner in KBR, reflecting our shared commitment to building the essential infrastructure of tomorrow for the next generation of space innovators and explorers.”

NASA introduced the concept of a collaborative hub for academic, commercial and international partners focused on spaceflight in 2023. It signed leases with the American Center for Manufacturing and Innovation and the Texas A&M University System for the previously unused space at JSC last year.

“For more than 60 years, NASA Johnson has been the hub of human space exploration,” Vanessa Wyche, NASA Johnson Space Center Director, said in a statement at the time. “This Space Systems Campus will be a significant component within our objectives for a robust and durable space economy that will benefit not only the nation’s efforts to explore the Moon, Mars and the asteroids, but all of humanity as the benefits of space exploration research roll home to Earth.”

Texas A&M is developing the $200 million Texas A&M Space Institute, funded by the Texas Space Commission, at the center of the park. The facility broke ground last year and will focus on academic, government and commercial collaboration, as well as workforce training programs. ACMI is developing the facilities at Exploration Park.

Once completed, Exploration Park is expected to feature at least 20 build-to-suit facilities over at least 1.5 million square feet. It will offer research and development space, laboratories, clean rooms, office space and light manufacturing capabilities for the aerospace, robotics, life support systems, advanced manufacturing and artificial intelligence industries.

According to the GHP, Griffin Partners has also been selected to serve as the co-developer of Exploration Park. Gensler is leading the design and Walter P Moore is overseeing civil engineering.

Houston cleantech co. plans first-of-its-kind sustainable aviation fuel facility

coming soon

Houston-based Syzygy Plasmonics announced plans to develop what it calls the world's first electrified facility to convert biogas into sustainable aviation fuel (SAF).

The facility, known as NovaSAF 1, will be located in Durazno, Uruguay. It is expected to produce over 350,000 gallons of SAF annually, which would be considered “a breakthrough in cost-effective, scalable clean fuel,” according to the company.

"This is more than just a SAF plant; it's a new model for biogas economics," Trevor Best, CEO of Syzygy Plasmonics, said in a news release. "We're unlocking a global asset class of underutilized biogas sites and turning them into high-value clean fuel hubs without pipelines, costly gas separation, or subsidy dependence.”

The project is backed by long-term feedstock and site agreements with one of Uruguay's largest dairy and agri-energy operations, Estancias del Lago, while the permitting and equipment sourcing are ongoing alongside front-end engineering work led by Kent.

Syzygy says the project will result in a 50 percent higher SAF yield than conventional thermal biogas reforming pathways and will utilize both methane and CO2 naturally found in biogas as feedstocks, eliminating the need for expensive CO2 separation technologies and infrastructure. Additionally, the modular facility will be designed for easy replication in biogas-rich regions.

The new facility is expected to begin commercial operations in Q1 2027 and produce SAF with at least an 80 percent reduction in carbon intensity compared to Jet A fuel. The company says that once fully commercialized the facility will produce SAF at Jet-A fuel cost parity.

“We believe NovaSAF represents one of the few viable pathways to producing SAF at jet parity and successfully decarbonizing air travel,” Best added in the release.

---

This article originally ran on EnergyCapital.

Houston company ranks No. 13 worldwide on Forbes Global 2000 list

World's Biggest Companies

More than 60 Texas-based companies appear on Forbes’ 2025 list of the world’s 2,000 biggest publicly traded companies, and nearly half come from Houston.

Among Texas companies whose stock is publicly traded, Spring-based ExxonMobil is the highest ranked at No. 13 globally.

Rounding out Texas’ top five are Houston-based Chevron (No. 30), Dallas-based AT&T (No. 35), Austin-based Oracle (No. 66), and Austin-based Tesla (No. 69).

Ranking first in the world is New York City-based J.P. Morgan Chase.

Forbes compiled this year’s Global 2000 list using data from FactSet Research to analyze the biggest public companies based on four metrics: sales, profit, assets, and market value.

“The annual Forbes Global 2000 list features the companies shaping today’s global markets and moving them worldwide,” said Hank Tucker, a staff writer at Forbes. “This year’s list showcases how despite a complex geopolitical landscape, globalization has continued to fuel decades of economic growth, with the world’s largest companies more than tripling in size across multiple measures in the past 20 years.”

The U.S. topped the list with 612 companies, followed by China with 317 and Japan with 180.

Here are the rest of the Texas-based companies in the Forbes 2000, grouped by the location of their headquarters and followed by their global ranking.

Houston area

  • ConocoPhillips (No. 105)
  • Phillips 66 (No. 276)
  • SLB (No. 296)
  • EOG Resources (No. 297)
  • Occidental Petroleum (No. 302)
  • Waste Management (No. 351)
  • Kinder Morgan (No. 370)
  • Hewlett Packard Enterprise (No. 379)
  • Baker Hughes (No. 403)
  • Cheniere Energy (No. 415)
  • Corebridge Financial (No. 424)
  • Sysco (No. 448)
  • Halliburton (No. 641)
  • Targa Resources (No. 651)
  • NRG Energy (No. 667)
  • Quanta Services (No. 722)
  • CenterPoint Energy (No. 783)
  • Coterra Energy (No. 1,138)
  • Crown Castle International (No. 1,146)
  • Westlake Corp. (No. 1,199)
  • APA Corp. (No. 1,467)
  • Comfort Systems USA (No. 1,629)
  • Group 1 Automotive (No. 1,653)
  • Talen Energy (No. 1,854)
  • Prosperity Bancshares (No. 1,855)
  • NOV (No. 1,980)

Austin area

  • Dell Technologies (No. 183)
  • Flex (No. 887)
  • Digital Realty Trust (No. 1,063)
  • CrowdStrike (No. 1,490)

Dallas-Fort Worth

  • Caterpillar (No. 118)
  • Charles Schwab (No. 124)
  • McKesson (No. 195)
  • D.R. Horton (No. 365)
  • Texas Instruments (No. 374)
  • Vistra Energy (No. 437)
  • CBRE (No. 582)
  • Kimberly-Clark (No. 639)
  • Tenet Healthcare (No. 691)
  • American Airlines (No. 834)
  • Southwest Airlines (No. 844)
  • Atmos Energy (No. 1,025)
  • Builders FirstSource (No. 1,039)
  • Copart (No. 1,062)
  • Fluor (No. 1,153)
  • Jacobs Solutions (1,232)
  • Globe Life (1,285)
  • AECOM (No. 1,371)
  • Lennox International (No. 1,486)
  • HF Sinclair (No. 1,532)
  • Invitation Homes (No. 1,603)
  • Celanese (No. 1,845)
  • Tyler Technologies (No. 1,942)

San Antonio

  • Valero Energy (No. 397)
  • Cullen/Frost Bankers (No. 1,560)

Midland

  • Diamondback Energy (No. 471)
  • Permian Resources (No. 1,762)
---

A version of this article originally appeared on CultureMap.com.