Rice University scientists Jeffrey Hartgerink, Brett Pogostin and Kevin McHugh have developed SABER, a peptide hydrogel system for drug delivery. Photos courtesy Rice University.

A team of Rice University scientists has developed a new drug delivery platform that researchers say can slow the rate of drug release, which has major implications for drug efficacy and potentially cancer immunotherapy.

The research was published in Nature Nanotechnology, and supported by the National Science Foundation, the National Institutes of Health, the Cancer Prevention and Research Institute of Texas and the Welch Foundation.

In the study, the team demonstrated how a peptide hydrogel functions as a three-dimensional network that controls the rate of release across a range of medication types, including small-molecule drugs and biologics such as insulin and antibodies. The system, called self-assembling boronate ester release (SABER), uses reversible chemical bonds between the peptide and the drug molecule to extend the duration of drug release. Instead of passing quickly through the net, the drug gets temporarily “stuck” each time it binds to the peptide, which slows its passage out of the hydrogel, according to Rice.

The researchers formulated a tuberculosis-treating drug into a hydrogel. They used it to treat infected mice with a single injection of the drug-laden hydrogel. In the test, the hydrogel outperformed almost daily oral administration of the medication over two weeks. Insulin packaged in SABER hydrogels successfully controlled blood sugar levels in diabetic mice for six days in another set of experiments.

Brett Pogostin, a Rice doctoral alum who led the development of SABER and served as first author of the study, began working on self-assembling peptides as an undergraduate student at Rice. Jeffrey Hartgerink, a professor of chemistry and bioengineering at Rice, and Kevin McHugh, associate professor of bioengineering and chemistry and a Cancer Prevention and Research Institute of Texas scholar, advised Pogostin and served as corresponding authors on the study.

Pogostin’s work aimed to bridge foundational materials research and biomedical applications. SABER was inspired by a drug delivery course taught by McHugh, where Pogostin learned about dynamic covalent bonds used in glucose sensing, where the bonds reversibly form and break apart. That quality inspired Pogostin to adapt the concept for drug delivery.

“Brett really drove this project in a way that is, in my experience, unusual for a graduate student,” Hartgerink said in the news release. “It’s a very versatile approach. You can make both small-molecule drugs and very large biologics sticky with the type of chemistry that Brett developed.”

The team demonstrated the platform in two different use cases with Tuberculosis and Type 1 diabetes, with SABER simplifying dosing and enhancing the efficacy of the drugs. Hartgerink described the current SABER system as “generation one,” and plans to work to make it widely applicable. He is looking into how SABER could be applied to cancer immunotherapy.

“What I’m really passionate about right now is cancer prevention — trying to think about how we can use materials to prime the immune system to prevent cancer from ever happening as opposed to just treating it,” Pogostin added.

Rice University's Lei Li has been awarded a $550,000 NSF CAREER Award to develop wearable, hospital-grade medical imaging technology. Photo by Jeff Fitlow/ Courtesy Rice University

Rice University professor earns $550k NSF award for wearable imaging tech​

science supported

Another Houston scientist has won one of the highly competitive National Science Foundation (NSF) CAREER Awards.

Lei Li, an assistant professor of electrical and computer engineering at Rice University, has received a $550,000, five-year grant to develop wearable, hospital-grade medical imaging technology capable of visualizing deep tissue function in real-time, according to the NSF. The CAREER grants are given to "early career faculty members who demonstrate the potential to serve as academic models and leaders in research and education."

“This is about giving people access to powerful diagnostic tools that were once confined to hospitals,” Li said in a news release from Rice. “If we can make imaging affordable, wearable and continuous, we can catch disease earlier and treat it more effectively.”

Li’s research focuses on photoacoustic imaging, which merges light and sound to produce high-resolution images of structures deep inside the body. It relies on pulses of laser light that are absorbed by tissue, leading to a rapid temperature rise. During this process, the heat causes the tissue to expand by a fraction, generating ultrasound waves that travel back to the surface and are detected and converted into an image. The process is known to yield more detailed images without dyes or contrast agents used in some traditional ultrasounds.

However, current photoacoustic systems tend to use a variety of sensors, making them bulky, expensive and impractical. Li and his team are taking a different approach.

Instead of using hundreds of separate sensors, Li and his researchers are developing a method that allows a single sensor to capture the same information via a specially designed encoder. The encoder assigns a unique spatiotemporal signature to each incoming sound wave. A reconstruction algorithm then interprets and decodes the signals.

These advances have the potential to lower the size, cost and power consumption of imaging systems. The researchers believe the device could be used in telemedicine, remote diagnostics and real-time disease monitoring. Li’s lab will also collaborate with clinicians to explore how the miniaturized technology could help monitor cancer treatment and other conditions.

“Reducing the number of detection channels from hundreds to one could shrink these devices from bench-top systems into compact, energy-efficient wearables,” Li said in the release. “That opens the door to continuous health monitoring in daily life—not just in hospitals.”

Amanda Marciel, the William Marsh Rice Trustee Chair of chemical and biomolecular engineering and an assistant professor at Rice, received an NSF CAREER Award last year. Read more here.

The Rice Biotech Launch Pad has named two bioengineering professors to its leadership team. Photo courtesy Rice University.

Rice biotech accelerator appoints 2 leading researchers to team

Launch Pad

The Rice Biotech Launch Pad, which is focused on expediting the translation of Rice University’s health and medical technology discoveries into cures, has named Amanda Nash and Kelsey L. Swingle to its leadership team.

Both are assistant professors in Rice’s Department of Bioengineering and will bring “valuable perspective” to the Houston-based accelerator, according to Rice.

“Their deep understanding of both the scientific rigor required for successful innovation and the commercial strategies necessary to bring these technologies to market will be invaluable as we continue to build our portfolio of lifesaving medical technologies,” Omid Veiseh, faculty director of the Launch Pad, said in a news release.

Amanda Nash

Nash leads a research program focused on developing cell communication technologies to treat cancer, autoimmune diseases and aging. She previously trained as a management consultant at McKinsey & Co., where she specialized in business development, portfolio strategy and operational excellence for pharmaceutical and medtech companies. She earned her doctorate in bioengineering from Rice and helped develop implantable cytokine factories for the treatment of ovarian cancer. She holds a bachelor’s degree in biomedical engineering from the University of Houston.

“Returning to Rice represents a full-circle moment in my career, from conducting my doctoral research here to gaining strategic insights at McKinsey and now bringing that combined perspective back to advance Houston’s biotech ecosystem,” Nash said in the release. “The Launch Pad represents exactly the kind of translational bridge our industry needs. I look forward to helping researchers navigate the complex path from discovery to commercialization.”

Kelsey L. Swingle

Swingle’s research focuses on engineering lipid-based nanoparticle technologies for drug delivery to reproductive tissues, which includes the placenta. She completed her doctorate in bioengineering at the University of Pennsylvania, where she developed novel mRNA lipid nanoparticles for the treatment of preeclampsia. She received her bachelor’s degree in biomedical engineering from Case Western Reserve University and is a National Science Foundation Graduate Research Fellow.

“What draws me to the Rice Biotech Launch Pad is its commitment to addressing the most pressing unmet medical needs,” Swingle added in the release. “My research in women’s health has shown me how innovation at the intersection of biomaterials and medicine can tackle challenges that have been overlooked for far too long. I am thrilled to join a team that shares this vision of designing cutting-edge technologies to create meaningful impact for underserved patient populations.”

The Rice Biotech Launch Pad opened in 2023. It held the official launch and lab opening of RBL LLC, a biotech venture creation studio in May. Read more here.

A team of Rice University students won the Best Challenge Response Award at the 2025 TCC Wearables Workshop and University Challenge. Photo courtesy Rice.

Houston students develop new device to prepare astronauts for outer space

space race

Rice University students from the George R. Brown School of Engineering and Computing designed a space exercise harness that is comfortable, responsive, and adaptable and has the potential to assist with complex and demanding spacewalks.

A group of students—Emily Yao, Nikhil Ashri, Jose Noriega, Ben Bridges and graduate student Jack Kalicak—mentored by assistant professor of mechanical engineering Vanessa Sanchez, modernized harnesses that astronauts use to perform rigorous exercises. The harnesses are particularly important in preparing astronauts for a reduced-gravity space environment, where human muscles and bones atrophy faster than they do on Earth. However, traditional versions of the harnesses had many limitations that included chafing and bruising.

The new harnesses include sensors for astronauts to customize their workouts by using real-time data and feedback. An additional two sensors measure astronauts’ comfort and exercise performance based on temperature and humidity changes during exercise and load distribution at common pressure points.

“Our student-led team addressed this issue by adding pneumatic padding that offers a customized fit, distributes pressure over a large surface area to reduce discomfort or injuries and also seamlessly adapts to load shifts — all of which together improved astronauts’ performance,” Sanchez said in a news release. “It was very fulfilling to watch these young engineers work together to find innovative and tangible solutions to real-world problems … This innovative adjustable exercise harness transforms how astronauts exercise in space and will significantly improve their health and safety during spaceflights.”

The project was developed in response to a challenge posted by the HumanWorks Lab and Life Science Labs at NASA and NASA Johnson Space Center for the 2025 Technology Collaboration Center’s (TCC) Wearables Workshop and University Challenge, where teams worked to solve problems for industry leaders.

Rice’s adaptive harness won the Best Challenge Response Award. It was funded by the National Science Foundation and Rice’s Office of Undergraduate Research and Inquiry.

“This challenge gave us the freedom to innovate and explore possibilities beyond the current harness technology,” Yao added in the release. “I’m especially proud of how our team worked together to build a working prototype that not only has real-world impact but also provides a foundation that NASA and space companies can build and iterate upon.”

HEXAspec, founded by Tianshu Zhai and Chen-Yang Lin, has been awarded an NSF Partnership for Innovation grant. Photo courtesy of Rice

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

UH physics professor Donna Stokes and Allison Master, an assistant professor in the UH College of Education, were recognized by the Biden Administration for excellence in STEM fields. Photos courtesy UH.

2 Houston professors earn prestigious presidential awards for excellence in STEM

Big Wins

Allison Master, an assistant professor at the University of Houston, is the first from the college to be awarded the Presidential Early Career Award for Scientists and Engineers.

Master, who works in the Department of Psychological, Health and Learning Sciences at the UH College of Education, is one of 400 scientists and engineers to receive the honor from the Biden administration. The award recognizes those who “show exceptional potential for leadership early in their research careers,” according to a statement.

“This award speaks volumes about Allison’s dedication, ingenuity and innovation in educational sciences,” Diane Z. Chase, UH senior vice president for academic affairs and provost, said in a news release. “Her groundbreaking work embodies the university’s commitment to advancing knowledge, fostering equity in education and shaping a brighter future for students and educators alike.”

Master’s research in the Identity and Academic Motivation Lab at UH involves how societal stereotypes contribute to gender gaps in motivation to pursue STEM. Her study also explored ways to counter the stereotypes through educational strategies that make students feel that they belong, what drives children’s interest in STEM and the role of social connections. Her efforts resulted in millions of dollars in grants from the U.S. Department of Education’s Institute of Education Sciences, the National Science Foundation, and other organizations, according to UH.

Established by President Bill Clinton in 1996, PECASE recognizes innovative and far-reaching developments in science and technology, expands awareness of careers in STEM fields, enhances connections between research and its impacts on society, and highlights the importance of science and technology for our nation’s future.

“This is something that was on my radar, sort of like a ‘pie in the sky’ dream that it would be amazing to win it, but I didn’t know if it could ever be possible,” Master said. “I am very grateful to the University of Houston for providing such a supportive environment for innovation, collaboration and meaningful research that made this achievement possible.”

In addition to Master’s honor, the White House also recently recognized UH physics professor Donna Stokes for outstanding mentoring in STEM disciplines with the Presidential Awards for Excellence in Science, Mathematics and Engineering Mentoring.

Stokes’ previous awards include the UH Teaching Excellence Award, the 2023 UH Honors College Outstanding Fellowship Mentorship Award, the 2011 UH Provost Academic Advising and Mentoring Award, a National Science Foundation Career Award, and a National Research Council Post-Doctoral Associateship Award. The National Science Foundation manages the PAESMEM awards, and the White House Office of Science and Technology Policy selects honorees.

PAESMEM award recipients will receive $10,000 and the opportunity to attend professional development events in Washington, D.C.

“Spotlighting STEM educators, researchers and mentors is important to demonstrate the critical role they play in developing and encouraging students to pursue STEM degrees and careers,” Stokes said in a news release. “It is imperative to have STEM educators who can foster the next generation of scientists to address local and national scientific challenges.”
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

3 Houston companies land on Deloitte’s Technology Fast 500 list

trending up

Three Houston companies have made this year’s Deloitte North America Technology Fast 500 list.

The report ranks the fastest-growing technology, media, telecommunications, life sciences, fintech, and energy tech companies in North America. The Houston companies to make the list, along with their revenue growth rates from 2021-2024, include:

  • No. 16 Action1 Corp., a provider of cybersecurity software. Growth rate: 7,265 percent
  • No. 92 Cart.com, a commerce and logistics platform. Growth rate: 1,053 percent
  • No. 312 Tellihealth, a remote health care platform. Growth rate: 244 percent

“Houston’s unique blend of entrepreneurial energy and innovation continues to strengthen the local business community, and I’m thrilled to see Houston companies honored on the 2025 Deloitte Technology Fast 500 list. Congratulations to all the winners,” said Melinda Yee, managing partner in Deloitte’s Houston office.

Action1 is no stranger to lists like the Deloitte Technology Fast 500. For instance, the company ranked first among software companies and 29th overall on this year’s Inc. 5000, a list of the country’s fastest-growing private companies. Its growth rate from 2021 to 2024 reached 7,188 percent.

Mike Walters, president and co-founder of Action1, said in August that the Inc. 5000 achievement “reflects the dedication of Action1’s global team, who continue to execute against an ambitious vision: a world where cyberattacks exploiting vulnerabilities are entirely prevented across all types of devices, operating systems, and applications.”

Atlanta-based Impericus, operator of an AI-powered platform that connects health care providers with pharmaceutical and life sciences companies, topped the Deloitte list with a 2021-24 growth rate of 29,738 percent.

“Our mission is to set the standard for ethical AI-powered physician connections to pharma resources, accelerating and expanding patient access to needed treatments,” said Dr. Osama Hashmi, a dermatologist who’s co-founder and CEO of Impiricus. “As we continue to innovate quickly, we remain committed to building ethical bridges across this vital ecosystem.”

How executive education retains your best employees + drives success

Investing in People

Hiring is tough, but retaining great people is even harder. Ask almost any manager what keeps them up at night, and the answer usually comes back to the same thing: How do we keep our best employees growing here instead of looking elsewhere?

One reliable approach has held up across industries. When people see their employer investing in their development, they’re more likely to stay, contribute, and imagine a future with the organization.

The data backs this up. Employees who take part in ongoing training are far less likely to leave, and the effect is especially strong for younger workers. One national survey found that 86% of millennials would stay with an employer that invests in their development. Companies that build a real learning culture see retention jump by 30-50%. The pattern is consistent: When people can learn and advance, they stay.

The ROI of executive education
Professional development signals value, but it also builds capability. When people have access to structured learning, they become better problem-solvers, more adaptable, and more confident leading through change.

That's the focus of Executive Education at Rice University's Jones Graduate School of Business. The portfolio is built for the realities of modern leadership: AI and digital transformation courses for teams navigating new technologies, and deeper programs in innovation and strategy for leaders sharpening long-term thinking.

“People, managers, professionals, and executives in all functional areas of business can benefit from this program,” notes Jing Zhou, Mary Gibbs Jones Professor of Management and Psychology at Rice. “We teach the fundamental principles of how to drive innovation and broaden the cognitive space.”

That perspective runs through every offering, from the Rice Advanced Management Program to the Leadership Accelerator and Leading Innovation. Each program gives participants practical tools to think strategically, work across teams and make meaningful change inside their organizations.

Building the leadership pipeline
Leadership development isn’t a perk anymore. It’s a strategic need for any organization that wants to grow and stay competitive.

Employers know this — nearly two-thirds say leadership training is essential to their success — yet employees still report feeling stalled. Reports find 74% of employees feel they aren’t reaching their potential because they lacked meaningful growth opportunities.

Rice Business designs its Executive Education programs to address that gap. The Rice Advanced Management Program, for example, supports leaders preparing for C-suite, board, or enterprise-level roles. Its format — two in-person modules separated by several weeks — gives participants space to test ideas at work, return with questions, and build on what they’ve learned. The structure fits demanding executive schedules while creating room for deeper reflection and richer peer connections.

Just as important, the program helps senior leaders align on strategy and culture. Participants develop a shared language and build stronger relationships, which translates into clearer decision-making, better collaboration, and less burnout across teams.

Houston’s advantage
Houston gives Rice Business Executive Education a distinctive edge. The city’s position in energy, healthcare, logistics, and innovation means participants are learning in the middle of a global business ecosystem. That proximity brings a mix of perspectives you don’t get in more siloed markets, and it pushes leaders to apply ideas to real-world problems in real time.

The expertise runs deep on campus, as well. Participants learn from faculty who are shaping conversations in their fields, not just teaching from a playbook. For many organizations, that outside perspective is a meaningful complement to in-house training — a chance to stretch thinking, challenge assumptions, and broaden leadership capacity.

Rice Business offers multiple paths into that experience, from open-enrollment programs like Leading Organizational Change, Executive Leadership for Women, or Driving Growth through AI and Digital Transformation to fully customized corporate partnerships. Across all formats, the focus is the same: education that is practical, relevant, and built for impact.

Investing in retention and results
When organizations make room for real development, the payoff shows up quickly: higher engagement, stronger leadership pipelines, and lower turnover. It also shapes the culture. People are more willing to take risks, ask better questions, and stay curious when they know learning is part of the job.

As Brent Smith, senior associate dean for Executive Education at Rice Business, explains, “There’s a layer of learning in leadership that’s about helping people adopt a leadership identity — to see themselves as the actual leader for their organization. That’s not an easy transition, but it’s the foundation of lasting success.”

For companies that want to build loyalty, deepen leadership capacity, and stay competitive in a fast-changing environment, investing in people isn’t optional. Rice Business Executive Education offers a clear path to do it well. Learn more here.

Check out upcoming programs:

Houston’s 10 most valuable startups revealed in new report

by the numbers

The Greater Houston Partnership has released its list of the 10 most valuable startups that are fueling the city’s growth and entrepreneurial energy, including industry giants like Axiom Space and Fervo Energy.

Currently, Houston hosts more than 1,300 startups in industries such as energy, life sciences, manufacturing and aerospace, according to the GHP. The list ranks its top 10 startups by valuation based on the company’s last private funding round, reflected in Pitchbook data, as of Oct. 20 of this year.

The top 10 list includes:

10. NXTClean Fuels

Valuation: $530 million

NXTClean Fuels builds biofuel refineries that produce renewable fuel by using feedstocks like cooking oil and recycled organic materials.

9. Homebase

Valuation: $660 million

HR tech company Homebase provides employee management software that helps manage and optimize timesheets, payroll and more, with over over 100,000 small businesses and 2 million hourly workers using its product.

8. Zolve

Valuation: $800 million

Zolve is a banking platform that provides customers with access to financial products that aim to be accessible, flexible, and affordable than other financial platforms.

7. Stramsen Biotech

Valuation: $807 million

Stramsen Biotech develops plant-based drug therapies that target both infectious and noninfectious diseases, which include cancer, diabetes, HIV, kidney disease and neurological issues.

6. Octagos

Valuation: $843 million

Healthtech company Octagos has developed a remote cardiac monitoring software driven by AI that helps consolidate patient data in real-time, assisting healthcare professionals in providing quicker, easier and more accurate care.

5. Fervo Energy

Valuation: $1.4 billion

Pioneering geothermal company Fervo Energy combines horizontal drilling and fiber-optic sensing to produce electricity. The company is developing its flagship Cape Station geothermal power project in Utah. The first phase of the project will supply 100 megawatts of power beginning in 2026

4.Cart.com

Valuation: $1.7 billion

Cart.com is an e-commerce giant and logistics solutions provider that was founded in 2020 and obtained unicorn status within just three years.

3. Axiom Space

Valuation: $2.1 billion

Axiom Space is one of the anchor tenants at the Houston Spaceport, and has completed four missions of sending commercial astronauts to the ISS since 2022. In 2027, the company expects to see the first section of its private space station, Axiom Station, launched into low-earth orbit.

2. Solugen

Valuation: $2.175 billion

Solugen replaces petroleum-based products with plant-derived substitutes through its Bioforge manufacturing platform.

1. HighRadius

Valuation: $3.2 billion

HighRadius uses advanced technology to automate and manage accounts receivable processes for businesses worldwide.

The GHP also released its State of Houston’s Tech and Innovation Landscape, which mapped Houston’s digital and innovation sectors. Read the full report here.