The funds were awarded to Han Xiao, a scientist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories.

Xiao will use the five-year grant to develop noncanonical amino acids (ncAAs) with diverse properties to help build proteins, according to a statement from Rice. He and his team will then use the ncAAs to explore the vivo sensors for enzymes involved in posttranslational modifications (PTMs), which play a role in the development of cancers and neurological disorders. Additionally, the team will look to develop a way to detect these enzymes in living organisms in real-time rather than in a lab.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement.

According to Rice, these developments could have major implications for the way diseases are treated, specifically for epigenetic inhibitors that are used to treat cancer.

Xiao helped lead the charge to launch Rice's new Synthesis X Center this spring. The center, which was born out of informal meetings between Xio's lab and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine, aims to improve cancer outcomes by turning fundamental research into clinical applications.

They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

Rice University's SynthX Center, a collaborative lab focused on cancer treatments, named its inaugural seed grant recipients. Photo via Getty Images

3 Houston cancer-focused research projects receive seed grants from new innovative initiative

funding the future

Three groundbreaking projects have just received seed grants from a new Houston-based source.

This spring, Rice University launched its Synthesis X Center with the goal of fostering the growth of cancer technologies and medications. Now, the SynthX, as it is known, and Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center have announced joint awards of grants to promising teams, all of which have principals at either Rice or Baylor.

The teams include:

  • A project from Drs. Pabel Miah of Baylor and Lei Li of Rice that involves the development and optimization of high-resolution imaging technology that’s intended for use in removing breast cancer from patients. The researchers combine ultrasound with photoacoustic technology to produce real-time imaging that allows surgeons to spot hard-to-locate tumors. This could reduce or eliminate tumor localization procedures which are invasive and costly.
  • A leukemia treatment profiting from molecular jackhammers, a type of molecule invented in the Rice University lab of Dr. James Tour. He’s joined in the project by Drs. Xin Li and Yongcheng Song, both of Baylor. Molecular jackhammers vibrate more than a trillion times per second when activated by a specific light frequency. Doing this can kill nearby cancer cells. The new treatment is intended to disrupt the activity of a transcription protein called ENL that helps fuel the growth of leukemia cells in several acute forms of the disease.
  • A project that could discover how to inspire cancer cells to kill themselves, using a cancer-associated enzyme called lysine demethylase 4A. Baylor’s Dr. Ruhee Dere and Rice’s Dr. Anna Karin-Gustavsson are studying the KDM4A with the process of apoptosis, or programmed cell death, in mind for the aberrant cells.

The seed grants are managed by Rice’s office for Educational and Research Initiatives for Collaborative Health (ENRICH). Each of the three grants is intended to last two years and includes funds of up to $80,000.

The goal is to allow research teams to collect preliminary data that can be used to apply for more substantial grants from bodies like the Cancer Prevention and Research Institute of Texas (CPRIT) or the National Institute of Health (NIH).

Three quarters of the funds will be provided in the first year. Teams that produce grant submissions with multiple principal investigators in that first year will be eligible to collect the additional quarter.

CellChorus created a visualization AI program that helps scientists to better understand the functioning of cells, including their activation, killing and movement. Photo via Getty Images

Houston health tech startup scores $2.5M SBIR grant to advance unique cell therapy AI technology

fresh funding

A Houston biotech company just announced a new award of $2.5 million.

CellChorus, a spinoff of the Single Cell Lab at the University of Houston, announced the fresh funding, which comes from an SBIR (Small Business Innovation Research) grant from the National Institute of Health (NIH) through its National Center for Advancing Translational Sciences (NCATS).

CellChorus is the business behind a technology called TIMING, which stands for Time-lapse Imaging Microscopy In Nanowell Grids. It’s a visualization AI program that helps scientists to better understand the functioning of cells, including their activation, killing and movement. This more in-depth knowledge of immune cells could be instrumental in developing novel therapies in countless disorders, including cancers and infectious diseases.

“While many cell therapies have been approved and are in development, the industry needs an integrated analytical platform that provides a matrix of functional readouts, including cell phenotype and metabolism on the same cells over time,” Rebecca Berdeaux, vice president of science at CellChorus, says in a press release. “We are grateful to NCATS for its support of the development of application-specific kits that apply dynamic, functional single-cell analysis of immune cell phenotype and function. The product we will develop will increase the impact of these therapies to improve the lives of patients.”

A two-year, $2.1 million Phase II grant will begin after the company achieves predetermined milestones under a $350,000 Phase I grant that is currently taking place. As Berdeaux explained, the funds will be used to develop TIMING kits which will manufacture analytics that provide end-users with rapid, specific and predictive results to accelerate translational research and the development and manufacture of more effective cell therapies.

TIMING is more than a great idea whose time has yet to come. It has already been proven in great depth. In fact, last June, CellChorus CEO Daniel Meyer told InnovationMap that he was initially attracted to the technology because it was “very well validated.” At the time, CellChorus had just announced a $2.3 million SBIR Fast-Track grant from the National Institute of General Medical Sciences. The company also went on to win an award in the Life Science category of the 2023 Houston Innovation Awards.

That confirmation of success comes from more than 200 peer-reviewed papers that describe myriad cell types and types of therapy, all of which used data from TIMING assays. TIMING data has benefited industry leaders in everything from research and clinical development to manufacturing. With the new grant, TIMING will become more widely available to scientists making important discoveries relating to the inner workings of the cells that drive our immunity.

The NIH grant goes toward TransplantAI's work developing more precise models for heart and lung transplantation. Photo via Getty Images

Houston health tech company scores $2.2M grant to use AI to make organ transplants smarter, more successful

future of medicine

The National Institute of Health has bestowed a Houston medtech company with a $2.2 million Fast-Track to Phase 2 award. InformAI will use the money for the product development and commercialization of its AI-enabled organ transplant informatics platform.

Last year, InformAI CEO Jim Havelka told InnovationMap, “A lot of organs are harvested and discarded.”

TransplantAI solves that problem, as well as organ scarcity and inefficiency in allocation of the precious resource.

How does it work? Machine learning and deep learning from a million donor transplants informs the AI, which determines who is the best recipient for each available organ using more than 500 clinical parameters. Organ transplant centers and organ procurement organizations (OPOs) will be able to use the product to make a decision on how to allocate each organ in real time. Ultimately, the tool will service 250 transplant centers and 56 OPOs around the United States.

The NIH grant goes toward developing more precise models for heart and lung transplantation (kidney and liver algorithms are further along in development thanks to a previous award from the National Science Foundation), as well as Phase 2 efforts to fully commercialize TransplantAI.

"There is an urgent need for improved and integrated predictive clinical insights in solid organ transplantation, such as for real-time assessment of waitlist mortality and the likelihood of successful post-transplantation outcomes," according to the grant’s lead clinical investigator, Abbas Rana, associate professor of surgery at Baylor College of Medicine.

“This information is essential for healthcare teams and patients to make informed decisions, particularly in complex cases where expanded criteria allocation decisions are being considered," Rana continues. "Currently, the separation of donor and recipient data into different systems requires clinical teams to conduct manual, parallel reviews for pairing assessments. Our team, along with those at other leading transplant centers nationwide, receives hundreds of organ-recipient match offers weekly.”

Organ transplantation is moving into the future, and Transplant AI is at the forefront.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas is the 4th hardest working state in America, report finds

Ranking It

It's no secret that Texans are hardworking people. To align with the Labor Day holiday, a new WalletHub study asserts that the Lone Star State is one of the five most hardworking states in America for 2025.

The report ranked Texas the fourth most hardworking state this year, indicating that its residents are working harder than ever after the state fell into seventh place in 2024. Texas previously ranked No. 4 in 2019 and 2020, slipped into No. 5 in 2021 and 2022, then continued falling into sixth place in 2023. But now the state is making its way back to the top of the list.

WalletHub's analysts compared all 50 states based on "direct" and "indirect" work factors. The six "direct" work factors included each state's average workweek hours, employment rates, the share of households where no adults work, the share of workers leaving vacation time unused, and other data. The four "indirect" work factors consisted of workers' average commute times, the share of workers with multiple jobs, the annual volunteer hours per resident, and the average leisure time spent per day.

North Dakota landed on top as the most hardworking state in America for 2025 for another year in a row, earning a score of 66.17 points out of a possible 100. For comparison, Texas ranked No. 4 with 57.06 points. Alaska (No. 2), South Dakota (No. 3), and Hawaii (No. 5) round out the top five hardest working states.

Across the study's two main categories, Texas ranked No. 5 in the "direct" work factors ranking, and earned a respectable No. 18 rank for its "indirect" work factors.

Broken down further, Texans have the second-longest average workweek hours in America, and they have the 12th best average commute times. Texans have the 6th lowest amount of average leisure time spent per day, the report also found.

According to the study's findings, many Americans nationwide won't take the chance to not work as hard when presented with the opportunity. A 2024 Sorbet PTO report found 33 percent of Americans' paid time off was left unused in 2023.

"While leaving vacation time on the table may seem strange to some people, there are plenty of reasons why workers choose to do so," the report's author wrote. "Some fear that if they take time off they will look less dedicated to the job than other employees, risking a layoff. Others worry about falling behind on their work or are concerned that the normal workflow will not be able to function without them."

The top 10 hardest working states are:

  • No. 1 – North Dakota
  • No. 2 – Alaska
  • No. 3 – South Dakota
  • No. 4 – Texas
  • No. 5 – Hawaii
  • No. 6 – Virginia
  • No. 7 – New Hampshire
  • No. 8 – Wyoming
  • No. 9 – Maryland
  • No. 10 – Nebraska
---

This story originally appeared on CultureMap.com.

Houston femtech co. debuts new lactation and wellness pods

mom pod

Houston-based femtech company Work&, previously known as Work&Mother, has introduced new products in recent months aimed at supporting working mothers and the overall health of all employees.

The company's new Lactation Pod and Hybrid Pod serve as dual-use lactation and wellness spaces to meet employer demand, the company shared in a news release. The compact pods offer flexible design options that can serve permanent offices and nearly all commercial spaces.

They feature a fully compliant lactation station while also offering wellness functionalities that can support meditation, mental health, telehealth and prayer. In line with Work&'s other spaces, the pods utilize the Work& scheduling platform, which prioritizes lactation bookings to help employers comply with the PUMP Act.

“This isn’t about perks,” Jules Lairson, Work& co-founder and COO, said in the release. “It’s about meeting people where they are—with dignity and intentional design. That includes the mother returning to work, the employee managing anxiety, and everyone in between.”

According to the company, several Fortune 500 companies are already using the pods, and Work& has plans to grow the products' reach.

Earlier this year, Work& introduced its first employee wellness space at MetroNational’s Memorial City Plazas, representing Work&'s shift to offer an array of holistic health and wellness solutions for landlords and tenants.

The company, founded in 2017 by Lairson and CEO Abbey Donnell, was initially focused on outfitting commercial buildings with lactation accommodations for working parents. While Work& still offers these services through its Work&Mother branch, the addition of its Work&Wellbeing arm allowed the company to also address the broader wellness needs of all employees.

The company rebranded as Work& earlier this year.