The funds were awarded to Han Xiao, a scientist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories.

Xiao will use the five-year grant to develop noncanonical amino acids (ncAAs) with diverse properties to help build proteins, according to a statement from Rice. He and his team will then use the ncAAs to explore the vivo sensors for enzymes involved in posttranslational modifications (PTMs), which play a role in the development of cancers and neurological disorders. Additionally, the team will look to develop a way to detect these enzymes in living organisms in real-time rather than in a lab.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement.

According to Rice, these developments could have major implications for the way diseases are treated, specifically for epigenetic inhibitors that are used to treat cancer.

Xiao helped lead the charge to launch Rice's new Synthesis X Center this spring. The center, which was born out of informal meetings between Xio's lab and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine, aims to improve cancer outcomes by turning fundamental research into clinical applications.

They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

Rice University's SynthX Center, a collaborative lab focused on cancer treatments, named its inaugural seed grant recipients. Photo via Getty Images

3 Houston cancer-focused research projects receive seed grants from new innovative initiative

funding the future

Three groundbreaking projects have just received seed grants from a new Houston-based source.

This spring, Rice University launched its Synthesis X Center with the goal of fostering the growth of cancer technologies and medications. Now, the SynthX, as it is known, and Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center have announced joint awards of grants to promising teams, all of which have principals at either Rice or Baylor.

The teams include:

  • A project from Drs. Pabel Miah of Baylor and Lei Li of Rice that involves the development and optimization of high-resolution imaging technology that’s intended for use in removing breast cancer from patients. The researchers combine ultrasound with photoacoustic technology to produce real-time imaging that allows surgeons to spot hard-to-locate tumors. This could reduce or eliminate tumor localization procedures which are invasive and costly.
  • A leukemia treatment profiting from molecular jackhammers, a type of molecule invented in the Rice University lab of Dr. James Tour. He’s joined in the project by Drs. Xin Li and Yongcheng Song, both of Baylor. Molecular jackhammers vibrate more than a trillion times per second when activated by a specific light frequency. Doing this can kill nearby cancer cells. The new treatment is intended to disrupt the activity of a transcription protein called ENL that helps fuel the growth of leukemia cells in several acute forms of the disease.
  • A project that could discover how to inspire cancer cells to kill themselves, using a cancer-associated enzyme called lysine demethylase 4A. Baylor’s Dr. Ruhee Dere and Rice’s Dr. Anna Karin-Gustavsson are studying the KDM4A with the process of apoptosis, or programmed cell death, in mind for the aberrant cells.

The seed grants are managed by Rice’s office for Educational and Research Initiatives for Collaborative Health (ENRICH). Each of the three grants is intended to last two years and includes funds of up to $80,000.

The goal is to allow research teams to collect preliminary data that can be used to apply for more substantial grants from bodies like the Cancer Prevention and Research Institute of Texas (CPRIT) or the National Institute of Health (NIH).

Three quarters of the funds will be provided in the first year. Teams that produce grant submissions with multiple principal investigators in that first year will be eligible to collect the additional quarter.

CellChorus created a visualization AI program that helps scientists to better understand the functioning of cells, including their activation, killing and movement. Photo via Getty Images

Houston health tech startup scores $2.5M SBIR grant to advance unique cell therapy AI technology

fresh funding

A Houston biotech company just announced a new award of $2.5 million.

CellChorus, a spinoff of the Single Cell Lab at the University of Houston, announced the fresh funding, which comes from an SBIR (Small Business Innovation Research) grant from the National Institute of Health (NIH) through its National Center for Advancing Translational Sciences (NCATS).

CellChorus is the business behind a technology called TIMING, which stands for Time-lapse Imaging Microscopy In Nanowell Grids. It’s a visualization AI program that helps scientists to better understand the functioning of cells, including their activation, killing and movement. This more in-depth knowledge of immune cells could be instrumental in developing novel therapies in countless disorders, including cancers and infectious diseases.

“While many cell therapies have been approved and are in development, the industry needs an integrated analytical platform that provides a matrix of functional readouts, including cell phenotype and metabolism on the same cells over time,” Rebecca Berdeaux, vice president of science at CellChorus, says in a press release. “We are grateful to NCATS for its support of the development of application-specific kits that apply dynamic, functional single-cell analysis of immune cell phenotype and function. The product we will develop will increase the impact of these therapies to improve the lives of patients.”

A two-year, $2.1 million Phase II grant will begin after the company achieves predetermined milestones under a $350,000 Phase I grant that is currently taking place. As Berdeaux explained, the funds will be used to develop TIMING kits which will manufacture analytics that provide end-users with rapid, specific and predictive results to accelerate translational research and the development and manufacture of more effective cell therapies.

TIMING is more than a great idea whose time has yet to come. It has already been proven in great depth. In fact, last June, CellChorus CEO Daniel Meyer told InnovationMap that he was initially attracted to the technology because it was “very well validated.” At the time, CellChorus had just announced a $2.3 million SBIR Fast-Track grant from the National Institute of General Medical Sciences. The company also went on to win an award in the Life Science category of the 2023 Houston Innovation Awards.

That confirmation of success comes from more than 200 peer-reviewed papers that describe myriad cell types and types of therapy, all of which used data from TIMING assays. TIMING data has benefited industry leaders in everything from research and clinical development to manufacturing. With the new grant, TIMING will become more widely available to scientists making important discoveries relating to the inner workings of the cells that drive our immunity.

The NIH grant goes toward TransplantAI's work developing more precise models for heart and lung transplantation. Photo via Getty Images

Houston health tech company scores $2.2M grant to use AI to make organ transplants smarter, more successful

future of medicine

The National Institute of Health has bestowed a Houston medtech company with a $2.2 million Fast-Track to Phase 2 award. InformAI will use the money for the product development and commercialization of its AI-enabled organ transplant informatics platform.

Last year, InformAI CEO Jim Havelka told InnovationMap, “A lot of organs are harvested and discarded.”

TransplantAI solves that problem, as well as organ scarcity and inefficiency in allocation of the precious resource.

How does it work? Machine learning and deep learning from a million donor transplants informs the AI, which determines who is the best recipient for each available organ using more than 500 clinical parameters. Organ transplant centers and organ procurement organizations (OPOs) will be able to use the product to make a decision on how to allocate each organ in real time. Ultimately, the tool will service 250 transplant centers and 56 OPOs around the United States.

The NIH grant goes toward developing more precise models for heart and lung transplantation (kidney and liver algorithms are further along in development thanks to a previous award from the National Science Foundation), as well as Phase 2 efforts to fully commercialize TransplantAI.

"There is an urgent need for improved and integrated predictive clinical insights in solid organ transplantation, such as for real-time assessment of waitlist mortality and the likelihood of successful post-transplantation outcomes," according to the grant’s lead clinical investigator, Abbas Rana, associate professor of surgery at Baylor College of Medicine.

“This information is essential for healthcare teams and patients to make informed decisions, particularly in complex cases where expanded criteria allocation decisions are being considered," Rana continues. "Currently, the separation of donor and recipient data into different systems requires clinical teams to conduct manual, parallel reviews for pairing assessments. Our team, along with those at other leading transplant centers nationwide, receives hundreds of organ-recipient match offers weekly.”

Organ transplantation is moving into the future, and Transplant AI is at the forefront.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

West Coast innovation organization unveils new location in Houston suburb to boost Texas tech ecosystem

plugging in

Leading innovation platform Plug and Play announced the opening of its new flagship Houston-area location in Sugar Land, which is its fourth location in Texas.

Plug and Play has accelerated over 2,700 startups globally last year with corporate partners that include Dell Technologies, Daikin, Microsoft, LG Chem, Shell, and Mercedes. The company’s portfolio includes PayPal, Dropbox, LendingClub, and Course Hero, with 8 percent of the portfolio valued at over $100 million.

The deal, which facilitated by the Sugar Land Office of Economic Development and Tourism, will bring a new office for the organization to Sugar Land Town Square with leasing and hiring between December and January. The official launch is slated for the first quarter of 2025, and will feature 15 startups announced on Selection Day.

"By expanding to Sugar Land, we’re creating a space where startups can access resources, build partnerships, and scale rapidly,” VP Growth Strategy at Plug and Play Sherif Saadawi says in a news release. “This location will help fuel Texas' innovation ecosystem, providing entrepreneurs with the tools and networks they need to drive real-world impact and contribute to the state’s technological and economic growth."

Plug and Play plans to hire four full-time equivalent employees and accelerate two startup batches per year. The focus will be on “smart cities,” which include energy, health, transportation, and mobility sectors. One Sugar Land City representative will serve as a board member.

“We are excited to welcome Plug and Play to Sugar Land,” Mayor of Sugar Land Joe Zimmerma adds. “This investment will help us connect with corporate contacts and experts in startups and businesses that would take us many years to reach on our own. It allows us to create a presence, attract investments and jobs to the city, and hopefully become a base of operations for some of these high-growth companies.”

The organization originally entered the Houston market in 2019 and now has locations in Bryan/College Station, Frisco, and Cedar Park in Texas.

Uniquely Houston event to convene innovation experts across aerospace, energy, and medicine

guest column

Every year, Houston's legacy industries — energy, medicine, and aerospace — come together to share innovative ideas and collaborate on future opportunities.

For the eighteenth year in a row, the annual Pumps & Pipes event will showcase and explore convergence innovation and common technology themes across Houston’s three major industries. The hosting organization, also called Pumps & Pipes, was established in 2007 in Houston and is dedicated to fostering collaboration amongst the city's three major industries.

With NASA in its backyard, the world’s largest medical center, and a reputation as the “Energy Capital of the World,” Houston is uniquely positioned to lead in cross-industry convergence innovation and is reflected in the theme of this year’s event – Blueprint Houston: Converge and Innovate.

Here's what you can expect to explore at the event, which will take place this year on December 9 at TMC Helix Park. Tickets are available online.

The state of Texas’ aerospace investments

How are the recent strategic investments in aerospace by the State of Texas transforming the space economy and driving growth in adjacent industries? What is the case for cultivating a more dynamic and vibrant aerospace R&D environment?

These are the key questions explored in the opening session of Pumps & Pipes, moderated by David Alexander (Director, Rice Space Institute). Joining the discussion are distinguished leaders Norman Garza, Jr., Executive Director of the Texas Space Commission (TSC); as well as two members of the TSC board of directors: Sarah “Sassie” Duggelby, CEO/Co-Founder of Venus Aerospace; and Kathryn Lueders, GM at Starbase, SpaceX.

This panel will spotlight Texas’ critical role in shaping the future of aerospace, with a focus on its cross-sector impact, from space exploration to innovation in energy and health care. We’ll explore how the state’s investments are fueling research and development, creating economic opportunities, and fostering a more interconnected, high-tech ecosystem for the future.

Real-world applications of robotics and synthetic biology

Explore the groundbreaking intersection of syntheticbiology and robotics as they reshape industries from aerospace to energy to health care. Experts from academia and industry — Rob Ambrose of Texas A&M University, Shankar Nadarajah of ExxonMobil, Shalini Yadav of the Rice Synthetic Biology Institute, and Moji Karimi of Cemvita — will discuss the real-world applications and future possibilities of these two fields, including innovative uses of robotics and drones to monitor emissions from deep-sea oil rigs, and synthetic microbes that convert carbon dioxide into valuable chemical products.

Discover how synthetic biology and robotics are paving the way for a more sustainable, autonomous, efficient, and interconnected future.

The total artificial heart – a uniquely Houston story

Heart failure affects millions globally, yet only a small fraction of patients receive life-saving heart transplants. The Total Artificial Heart (TAH), developed by BiVACOR, offers a revolutionary solution for patients with severe heart failure who are ineligible for a transplant.

Luminary leader, Dr. Billy Cohn, will discuss the groundbreaking BiVACOR TAH, a device that fully replaces the function of the heart using a magnetically levitated rotary pump. This innovative approach is part of an FDA-approved first-in-human study, aiming to evaluate its use as a bridge-to-transplant for patients awaiting heart transplants.

Moderated by Dr. Alan Lumsden (Chair Dept. of CV Surgery at Houston Methodist Hospital), join Dr. Cohn as he shares insights, and the story-behind, this pioneering technology and its potential to reshape the future of heart failure treatment, offering new hope to thousands of patients in need.

------

Stuart Corr is the director of Innovation Systems Engineering at Houston Methodist and executive director of Pumps & Pipes.