Texas is listed as the third-most vulnerable state when it comes to robots replacing the workforce in manufacturing. Houston houses a third of the manufacturing jobs in the state. Thossaphol Somsri/Getty Images

If a new forecast comes true, Houston's manufacturing sector could take an especially hard hit from the upturn in the use of robots.

In a new report, Oxford Economics, a forecasting and analysis firm based in the United Kingdom, ranks Texas as the third most vulnerable state when it comes to human workers in manufacturing being replaced by robotic labor. The report gives no estimate of how many manufacturing jobs Texas might lose to robots, but around the world, robots could boot 20 million jobs by 2030.

About one-third of Texas' manufacturers operate in the Houston metro area, meaning the robot revolution carries significant weight for the regional economy.

In 2017, manufacturing accounted for $82.6 billion, or nearly 17 percent, of the Houston area's economic output, the U.S. Bureau of Economic Analysis says. Manufacturing employment in the region averaged 219,160 jobs in 2017, with total wages of nearly $4.8 billion.

Among the top manufacturing segments in the region are fabricated metals (22 percent of all manufacturing jobs), machinery (19 percent) and chemicals (17.5 percent), according to the Greater Houston Partnership. Between 2012 and 2017, manufacturing employment in the Houston area slipped by 9.8 percent, going from 243,011 workers to 219,160 workers.

However, a recent report from the Economic Innovation Group shows Harris County netted more manufacturing jobs (11,592) from December 2016 to December 2018 than any other county in the U.S.

According to the National Association of Manufacturers, the manufacturing sector in Texas created more than $226 billion in economic output in 2017. Last year, about 880,900 people held manufacturing jobs in Texas; that's more than 7 percent of the statewide workforce.

In declaring that Texas sits among the states most susceptible to job losses due to robotics, Oxford Economics took into account factors such as:

  • Dependence on manufacturing jobs.
  • Current use of robots in manufacturing.
  • Productivity of the manufacturing workforce.

Based on those criteria, Texas received a robot vulnerability score of 0.50. The top two states, Oregon and Louisiana, each got a score of 0.58, with the higher number meaning greater vulnerability.

The report cites three reasons for the ascent of robots in manufacturing:

  • Robots are becoming cheaper than humans.
  • Robots are becoming more sophisticated.
  • Demand for manufactured goods is rising.

"The rise of the robots will boost productivity and economic growth. It will lead, too, to the creation of new jobs in yet-to-exist industries, in a process of 'creative destruction,'" according to the Oxford Economics report. "But existing business models across many sectors will be seriously disrupted. And tens of millions of existing jobs will be lost, with human workers displaced by robots at an increasing rate as robots become steadily more sophisticated."

Tony Bennett, president and CEO of the Texas Association of Manufacturers, says the Oxford Economics report isn't all gloom and doom.

"Robotics and mechanization in our advanced manufacturing industries will continue to displace some general-labor jobs. However, this change is also ushering in a new set of higher-skilled jobs that are being created to engineer, build, and service these sophisticated machines," Bennett says. "The state of Texas must continue striving to increase educational opportunities in engineering, math, science, and career and technical programs to meet the complex manufacturing processes of the future."

Houston Community College's Advanced Manufacturing Center for Excellence is among the organizations in the Houston area that are preparing workers for jobs in robotics and other high-demand, tech-driven aspects of manufacturing.

"Innovation is Houston's bedrock," Houston Mayor Sylvester Turner said in 2017. "The city would have never thrived without the innovations it took to build the Ship Channel and the innovating that goes on every day in the energy industry, at the Texas Medical Center, at the Johnson Space Center and in the manufacturing sector. Now, Houston is poised to take its place at the forefront of the American future in technology."

Earlier this year, another study found a similarly daunting result. Almost half of Houston's workplace tasks are susceptible to automation, according to a new report from the Brookings Institution's Metropolitan Policy Program. Of 100 metros analyzed, Houston ranks 31st among the country's 100 biggest metros, with 46.3 percent of work tasks susceptible to automation.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.