Houston-based Decisio's virtual care technology has been paired with GE Healthcare and Microsoft technology in a new initiative for hospitals dealing with the COVID-19 outbreak. Photo via decisiohealth.com

Houston-based health tech startup Decisio Health Inc. has been enlisted in the war against the novel coronavirus.

Chicago-based GE Healthcare Inc. has tapped Decisio's AI-powered DECISIOInsight software, which enables health care providers to remotely monitor patients, for an initiative involving Redmond, Washington-based Microsoft Corp. that's designed to help treat COVID-19 patients.

The coronavirus-targeted Mural Virtual Care Solution, which was introduced April 15, marries Decisio's virtual monitoring software with GE Healthcare's telehealth technology and Microsoft's Azure cloud-computing platform. It's designed to offer hospitals a broad view of COVID-19 patients who are hooked up to ventilators in ICUs. This platform merges data from ventilators, patient monitoring systems, electronic health records, labs, and other sources.

This special technology package is a stripped-down version of the Mural Virtual Care Solution, which pairs Decisio's and GE Healthcare's technology to virtually track hospital patients. GE Healthcare invested in Decisio in 2019.

Until January 31, 2021, the Mural coronavirus bundle is being provided at no cost to hospitals. Among the users is Oregon Health & Science University in Portland.

"We're trying to carry as much of the cost burden to make this as sustainable as possible for our hospital partners that we know are hurting economically right now," says Bryan Haardt, CEO of Decisio.

"There has to be a moralistic compass," he adds. "You have to be driven by something more than just profit."

GE Healthcare, which contributed to Decisio's $13 million Series B round in December, was already partnering with the startup on the Mural Virtual Care Solution. Microsoft was brought into the mix to speed up delivery of the platform in response to the coronavirus pandemic.

"This relationship did not exist prior to this initiative," Haardt says. "We all came together and said, 'Guys, we've got to do our part. It is absolutely a moral imperative that we get together.' And we said, 'OK, well, what are the parts?'"

Haardt says this project equips hospitals to adhere to the best standards of care when it comes to treating COVID-19 patients who are relying on ventilators. In a COVID-19 treatment setting, one of the key benefits of the Mural Virtual Care Solution is that a health care clinician can monitor a patient's vital signs and other data without physical contact, he says.

Founded in 2013, Decisio built its virtual health platform using technology licensed from and developed at the University of Texas Health Science Center in Houston. Coupling real-time clinical surveillance with data visualization, the DECISIOInsight software can pinpoint risks and guide clinicians toward better decisions about patient care.

Haardt says Decisio's software aims to reduce the rate of hospital deaths, length of hospital stays, and burden on hospital resources by helping health care providers decrease the severity of hospital-acquired infections, pneumonia, the flu, and other conditions. Baylor St. Luke's Medical Center in Houston is among the customers for Decisio and GE Healthcare's broad-based Mural Virtual Care Solution, which was rolled out last year.

Also, Decisio has teamed up with professional services firm Deloitte to deliver virtual patient monitoring at U.S. Department of Defense hospitals. This technology is being piloted at Brooke Army Medical Center in San Antonio and Naval Medical Center San Diego.

"We look at doctors and nurses as heroes, because they're really good at getting people out of trouble," Haardt says. "And we like to think of our solution as keeping people out of trouble, because if you can keep them out of the trouble, then these heroic, herculean efforts [by doctors and nurses] are not required as much … ."

Haardt explains that Decisio's technology can monitor patient activity and detect patient trends in not just one area of a hospital (such as an ICU) or throughout an entire hospital but across a commonly managed group of hospitals. Those insights help hospitals ensure all of their health care professionals are following the same treatment protocols.

The No. 1 economic detriment to hospitals "is doing things different at all their different facilities," Haardt says. "If you can reduce the variability of care, we know the cost to provide goods and services goes down, and we know the outcomes improve."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston investor on SaaS investing and cracking product-market fit

Houston innovators podcast episode 230

Aziz Gilani's career in tech dates back to when he'd ride his bike from Clear Lake High School to a local tech organization that was digitizing manuals from mission control. After years working on every side of the equation of software technology, he's in the driver's seat at a local venture capital firm deploying funding into innovative software businesses.

As managing director at Mercury, the firm he's been at since 2008, Gilani looks for promising startups within the software-as-a-service space — everything from cloud computing and data science and beyond.

"Once a year at Mercury, we sit down with our partners and talk about the next investment cycle and the focuses we have for what makes companies stand out," Gilani says on the Houston Innovators Podcast. "The current software investment cycle is very focused on companies that have truly achieved product-market fit and are showing large customer adoption."

An example of this type of company is Houston-based RepeatMD, which raised a $50 million series A round last November. Mercury's Fund V, which closed at an oversubscribed $160 million, contributed to RepeatMD's round.

"While looking at that investment, it really made me re-calibrate a lot of my thoughts in terms what product-market fit meant," Gilani says. "At RepeatMD, we had customers that were so eager for the service that they were literally buying into products while we were still making them."

Gilani says he's focused on finding more of these high-growth companies to add to Mercury's portfolio amidst what, admittedly, has been a tough time for venture capital. But 2024 has been looking better for those fundraising.

"We've some potential for improvement," Gilani says. "But overall, the environment is constrained, interest rates haven't budged, and we've seen some potential for IPO activity."

Gilani shares more insight into his investment thesis, what areas of tech he's been focused on recently, and how Houston has developed as an ecosystem on the podcast.

Houston startup scores $12M grant to support clinical evaluation of cancer-fighting drug

fresh funding

Allterum Therapeutics, a Houston biopharmaceutical company, has been awarded a $12 million product development grant from the Cancer Prevention and Research Institute of Texas (CPRIT).

The funds will support the clinical evaluation of a therapeutic antibody that targets acute lymphoblastic leukemia (ALL), one of the most common childhood cancers.

However, CEO and President Atul Varadhachary, who's also the managing director of Fannin Innovation, tells InnovationMap, “Our mission has grown much beyond ALL.”

The antibody, called 4A10, was invented by Scott Durum PhD and his team at the National Cancer Institute (NCI). Licensed exclusively by Allterum, a company launched by Fannin, 4A10 is a novel immunotherapy that utilizes a patient’s own immune system to locate and kill cancer cells.

Varadhachary explained that while about 80 percent of patients afflicted with ALL have the B-cell version, the other 20 percent suffer from T-cell ALL.

“Because the TLL population is so small, there are really no approved, effective drugs for it. The last drug that was approved was 18 or 19 years ago,” the CEO-scientist said. 4A10 addresses this unmet need, but also goes beyond it.

Because 4A10 targets CD127, also known as the interleukin-7 receptor, it could be useful in the treatment of myriad cancers. In fact, the receptor is expressed not just in hematological cancers like ALL, but also solid tumors like breast, lung, and colorectal cancers. There’s also “robust data,” according to Varadhachary for the antibody’s success against B-cell ALL, as well as many other cancers.

“Now what we're doing in parallel with doing the development for ALL is that we're continuing to do additional preclinical work in these other indications, and then at some point, we will raise a series A financing that will allow us to expand markets into things which are much more commercially attractive,” Varadhachary explains.

Why did they go for the less commercially viable application first? As Varadhachary put it, “The Fannin model is to allow us to go after areas which are major unmet medical needs, even if they are not necessarily as attractive on a commercial basis.”

But betting on a less common malady could have a bigger payoff than the Allterum team originally expected.

Before the new CPRIT grant, Allterum’s funding included a previous seed grant from CPRIT of $3 million. Other funds included an SBIR grant from NCI, as well as another NCI program called NExT, which deals specifically with experimental therapies.

“To get an antibody from research into clinical testing takes about $10 million,” Varadhachary says. “It's an expensive proposition.”

With this, and other nontraditional financing, the company was able to take what Varadhachary called “a huge unmet medical need but a really tiny commercial market” and potentially help combat a raft of other childhood cancers.

“That's our vision. It's not economically hugely attractive, but we think it's important,” says Varadhachary.

Atul Varadhachary is the managing director of Fannin Innovation. Photo via LinkedIn

Houston researcher scores prestigious NSF award for machine learning, power grid tech

grant funding

An associate professor at the University of Houston received the highly competitive National Science Foundation CAREER Award earlier this month for a proposal focused on integrating renewable resources to improve power grids.

The award grants more than $500,000 to Xingpeng Li, assistant professor of electrical and computer engineering and leader of the Renewable Power Grid Lab at UH, to continue his work on developing ways to use machine learning to ensure that power systems can continue to run efficiently when pulling their energy from wind and solar sources, according to a statement from UH. This work has applications in the events of large disturbances to the grid.

Li explains that currently, power grids run off of converted, stored kinetic energy during grid disturbances.

"For example, when the grid experiences sudden large generation losses or increased electrical loads, the stored kinetic energy immediately converted to electrical energy and addressed the temporary shortfall in generation,” Li said in a statement. “However, as the proportion of wind and solar power increases in the grid, we want to maximize their use since their marginal costs are zero and they provide clean energy. Since we reduce the use of those traditional generators, we also reduce the power system inertia (or stored kinetic energy) substantially.”

Li plans to use machine learning to create more streamlined models that can be implemented into day-ahead scheduling applications that grid operators currently use.

“With the proposed new modeling and computational approaches, we can better manage grids and ensure it can supply continuous quality power to all the consumers," he said.

In addition to supporting Li's research and model creations, the funds will also go toward Li and his team's creation of a free, open-source tool for students from kindergarten up through their graduate studies. They are also developing an “Applied Machine Learning in Power Systems” course. Li says the course will help meet workforce needs.

The CAREER Award recognizes early-career faculty members who “have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization,” according to the NSF. It's given to about 500 researchers each year.

Earlier this year, Rice assistant professor Amanda Marciel was also

granted an NSF CAREER Award to continue her research in designing branch elastomers that return to their original shape after being stretched. The research has applications in stretchable electronics and biomimetic tissues.

------

This article originally ran on EnergyCapital.