Here's a closer look at why Houston should be pushing for a more rapid transition to EVs. Photo via Getty Images

As urban populations increase and more vehicles hit the roads across the United States, the quality of the air is compromised, directly impacting health, environment, and quality of life ― especially for children, minorities, and other vulnerable populations. A 2023 study by Site Selection Group placed Houston at the vanguard of this trend, projecting the metro area to grow nearly 10 percent by 2028, eclipsing 8 million residents.

According to Evolve Houston, a nonprofit working to accelerate EV adoption by bringing together local public and private organizations, residents, and government, the transportation sector emits 47 percent of all greenhouse gas emissions in the Houston area.

In this context, electric vehicles offer a practical solution to mitigate the challenges posed by tailpipe emissions. Their adoption in urban settings has the potential to significantly improve air quality and enhance public health. It’s no wonder the upcoming Houston Auto Show will feature a dedicated EV Pavilion.

Here's a closer look at why Houston should be pushing for a more rapid transition to EVs:

  1. Children’s development is at stake: Early childhood is a critical period for brain development. However, toxic air pollutants can significantly inhibit this growth during these formative years. The consequences include impairing children’s cognitive capabilities in reading and math, akin to missing an entire month of elementary school.
  2. EVs counteract historical racial inequalities: Beyond being an environmental challenge, air pollution is a glaring racial and social justice issue. Areas with fewer White residents suffer almost triple the nitrogen dioxide levels compared to predominantly White zones, as highlighted by the National Academy of Sciences. Historically marginalized communities, often near major traffic corridors, endure heightened pollution exposure. Transitioning to EVs can help address these deeply ingrained environmental inequities.
  3. The health benefits are monumental: A brighter future awaits if EVs become mainstream. According to the American Lung Association, if all new vehicles sold by 2035 are zero-emission, the U.S. could see up to 89,300 fewer premature deaths by 2050. Additionally, asthma attacks might decline by 2 million, saving 10.7 million workdays and resulting in an incredible $978 billion in public health savings.
  4. Global success stories prove the benefits: The impact of mass EV adoption has already been demonstrated outside the U.S. For instance, Norway has seen a notable reduction in dangerous particle emissions since 87 percent of its new car sales are now fully electric. Likewise, California’s adoption of electric vehicles correlated with a 3.2% decrease in asthma-related ER visits between 2013 and 2019.
  5. Cities have the power and means to lead the way: Many global cities are trailblazers in the electric transition. New York City, with more than 4,000 government-owned EVs, is a prime example. Moreover, by electrifying their take-home fleets, cities can set a precedent for their communities. Seeing neighbors drive electric vehicles daily serves as a powerful endorsement, motivating nearby residents to make the switch. Incentives like public charging stations, free parking for EVs, rebates for home charger installations, reimbursing for charging at home, and reduced tolls, further bolster this movement.

Houstonians stand at a pivotal juncture. The choices made today concerning transportation will profoundly influence the health and well-being of residents tomorrow. The shift to electric vehicles is more than just an eco-friendly choice; it's a commitment to a brighter, cleaner future. By leading with action and vision, cities can create a legacy that upcoming generations will appreciate and thrive in.

------

Kate L. Harrison is the co-founder and head of marketing at MoveEV, an AI-backed EV transition company that helps organizations convert fleet and employee-owned gas vehicles to electric, and reimburse for charging at home.

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers make headway on affordable, sustainable sodium-ion battery

Energy Solutions

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

---

This story originally appeared on EnergyCapitalHTX.com.

FAA demands investigation into SpaceX's out-of-control Starship flight

Out of this world

The Federal Aviation Administration is demanding an accident investigation into the out-of-control Starship flight by SpaceX on May 27.

Tuesday's test flight from Texas lasted longer than the previous two failed demos of the world's biggest and most powerful rocket, which ended in flames over the Atlantic. The latest spacecraft made it halfway around the world to the Indian Ocean, but not before going into a spin and breaking apart.

The FAA said Friday that no injuries or public damage were reported.

The first-stage booster — recycled from an earlier flight — also burst apart while descending over the Gulf of Mexico. But that was the result of deliberately extreme testing approved by the FAA in advance.

All wreckage from both sections of the 403-foot (123-meter) rocket came down within the designated hazard zones, according to the FAA.

The FAA will oversee SpaceX's investigation, which is required before another Starship can launch.

CEO Elon Musk said he wants to pick up the pace of Starship test flights, with the ultimate goal of launching them to Mars. NASA needs Starship as the means of landing astronauts on the moon in the next few years.

TMC med-tech company closes $2.5M series A, plans expansion

fresh funding

Insight Surgery, a United Kingdom-based startup that specializes in surgical technology, has raised $2.5 million in a series A round led by New York City-based life sciences investor Nodenza Venture Partners. The company launched its U.S. business in 2023 with the opening of a cleanroom manufacturing facility at Houston’s Texas Medical Center.

The startup says the investment comes on the heels of the U.S. Food and Drug Administration (FDA) granting clearance to the company’s surgical guides for orthopedic surgery. Insight says the fresh capital will support its U.S. expansion, including one new manufacturing facility at an East Coast hospital and another at a West Coast hospital.

Insight says the investment “will provide surgeons with rapid access to sophisticated tools that improve patient outcomes, reduce risk, and expedite recovery.”

Insight’s proprietary digital platform, EmbedMed, digitizes the surgical planning process and allows the rapid design and manufacturing of patient-specific guides for orthopedic surgery.

“Our mission is to make advanced surgical planning tools accessible and scalable across the U.S. healthcare system,” Insight CEO Henry Pinchbeck said in a news release. “This investment allows us to accelerate our plan to enable every orthopedic surgeon in the U.S. to have easy access to personalized surgical devices within surgically meaningful timelines.”

Ross Morton, managing Partner at Nodenza, says Insight’s “disruptive” technology may enable the company to become “the leader in the personalized surgery market.”

The startup recently entered a strategic partnership with Ricoh USA, a provider of information management and digital services for businesses. It also has forged partnerships with the Hospital for Special Surgery in New York City, University of Chicago Medicine, University of Florida Health and UAB Medicine in Birmingham, Alabama.