From opioid research to plastics recycling, here are three research projects to watch out for in Houston. Photo via Getty Images

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research projects, we look into studies on robotics advancing stroke patient rehabilitation, the future of opioid-free surgery, and a breakthrough in recycling plastics.

The University of Houston's research on enhancing stroke rehabilitation

A clinical trial from a team at UH found that stroke survivors gained clinically significant arm movement and control by using an external robotic device powered by the patients' own brains. Image via UH.edu

A researcher at the University of Houston has seen positive results on using his robotics on stroke survivors for rehabilitation. Jose Luis Contreras-Vidal, director of UH's Non-Invasive Brain Machine Interface Systems Laboratory, recently published the results of the clinical trial in the journal NeuroImage: Clinical.

The testing proved that most patients retained the benefits for at least two months after the therapy sessions ended, according to a press release from UH, and suggested even more potential in the long term. The study equipped stroke survivors who have limited movement in one arm with a computer program that captures brain activity to determine the subject's intentions and then works with a robotic device affixed to the affected arm, to move in response to those intentions.

"This is a novel way to measure what is going on in the brain in response to therapeutic intervention," says Dr. Gerard Francisco, professor and chair of physical medicine and rehabilitation at McGovern Medical School at The University of Texas Health Science Center at Houston and co-principal investigator, in the release.

"This study suggested that certain types of intervention, in this case using the upper robot, can trigger certain parts of brain to develop the intention to move," he continues. "In the future, this means we can augment existing therapy programs by paying more attention to the importance of engaging certain parts of the brain that can magnify the response to therapy."

The trial was funded by the National Institute of Neurological Disorders and Stroke and Mission Connect, part of the TIRR Foundation. Contreras-Vidal is working on a longer term project with a National Science Foundation grant in order to design a low-cost system that would allow people to continue the treatments at home.

"If we are able to send them home with a device, they can use it for life," he says in the release.

Baylor College of Medicine's work toward opioid-free surgery

A local doctor is focused on opioid-free options. Photo via Getty Images

In light of a national opioid crisis and more and more data demonstrating the negative effects of the drugs, a Baylor College of Medicine orthopedic surgeon has been working to offer opioid-free surgery recovery to his patients.

"Thanks to a number of refinements, we are now able to perform hip and knee replacements, ranging from straightforward to very complex cases, without patients requiring a single opioid pill," says Dr. Mohamad Halawi, associate professor and chief quality officer in the Joseph Barnhart Department of Orthopedic Surgery, in a press release.

"Pain is one of patients' greatest fears when undergoing surgery, understandably so," Halawi continues. "Today, most patients wake up from surgery very comfortable. Gone are the days of trying to catch up with severe pain. It was a vicious cycle with patients paying the price in terms of longer hospitalization, slower recovery and myriad adverse events."

Halawi explains that his work focuses on preventative measures ahead of pain occurring as well as cutting out opioids before surgery.

"Opioid-free surgery is the way of the future, and it has become a standard of care in my practice," he says. "The ability to provide safer and faster recovery to all patients regardless of their surgical complexity is gratifying. I want to make sure that pain is one less thing for patients to worry about during their recovery."

Rice University's breakthrough on recycling plastics

A team of scientists have found a use for a material that comes out of plastics recycling. Photo via Rice.edu

Houston scientists has found a new use for an otherwise useless byproduct that comes from recycling plastics. Rice University chemist James Tour has discovered that turbostratic graphene flakes can be produced from pyrolyzed plastic ash, and those flakes can then be added to other substances like films of polyvinyl alcohol that better resist water in packaging and cement paste and concrete, as well as strengthen the material.

"This work enhances the circular economy for plastics," Tour says in a press release. "So much plastic waste is subject to pyrolysis in an effort to convert it back to monomers and oils. The monomers are used in repolymerization to make new plastics, and the oils are used in a variety of other applications. But there is always a remaining 10% to 20% ash that's valueless and is generally sent to landfills.

Tour's research has appeared in the journal Carbon. The co-authors of the study include Rice graduate students Jacob Beckham, Weiyin Chen and Prabhas Hundi and postdoctoral researcher Duy Xuan Luong, and Shivaranjan Raghuraman and Rouzbeh Shahsavari of C-Crete Technologies. The National Science Foundation, the Air Force Office of Scientific Research and the Department of Energy supported the research.

"Recyclers do not turn large profits due to cheap oil prices, so only about 15% of all plastic gets recycled," said Rice graduate student Kevin Wyss, lead author of the study. "I wanted to combat both of these problems."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice launches 'brain economy' initiative at World Economic Forum

brain health

Rice University has launched an initiative that will position “brain capital” as a key asset in the 21st century.

Rice rolled out the Global Brain Economy Initiative on Jan. 21 at the World Economic Forum in Davos, Switzerland.

“This initiative positions brain capital, or brain health and brain skills, at the forefront of global economic development, particularly in the age of artificial intelligence,” the university said in a news release.

The Rice-based initiative, whose partners are the University of Texas Medical Branch in Galveston and the Davos Alzheimer’s Collaborative, aligns with a recent World Economic Forum and McKinsey Health Institute report titled “The Human Advantage: Stronger Brains in the Age of AI,” co-authored by Rice researcher Harris Eyre. Eyre is leading the initiative.

“With an aging population and the rapid transformation of work and society driven by AI, the urgency has never been greater to focus on brain health and build adaptable human skills—both to support people and communities and to ensure long-term economic stability,” says Amy Dittmar, a Rice provost and executive vice president for academic affairs.

This initiative works closely with the recently launched Rice Brain Institute.

In its first year, the initiative will establish a global brain research agenda, piloting brain economy strategies in certain regions, and introducing a framework to guide financial backers and leaders. It will also advocate for public policies tied to the brain economy.

The report from the McKinsey Health Institute and World Economic Forum estimates that advancements in brain health could generate $6.2 trillion in economic gains by 2050.

“Stronger brains build stronger societies,” Eyre says. “When we invest in brain health and brain skills, we contribute to long-term growth, resilience, and shared prosperity.”

Rice Alliance and the Ion leader Brad Burke to retire this summer

lasting legacy

Brad Burke—a Rice University associate vice president who leads the Ion District’s Rice Alliance for Technology and Entrepreneurship and is a prominent figure in Houston’s startup community—is retiring this summer after a 25-year career at the university.

Burke will remain at the Rice Alliance as an adviser until his retirement on June 30.

“Brad’s impact on Rice extends far beyond any single program or initiative. He grew the Rice Alliance from a promising campus initiative into one of the most respected university-based entrepreneurship platforms,” Rice President Reginald DesRoches said in a news release.

During Burke’s tenure, the Rice Business School went from unranked in entrepreneurship to The Princeton Review’s No. 1 graduate entrepreneurship program for the past seven years and a top 20 entrepreneurship program in U.S. News & World Report’s rankings for the past 14 years.

“Brad didn’t just build programs — he built an ecosystem, a culture, and a reputation for Rice that now resonates around the world,” said Peter Rodriguez, dean of the business school. “Through his vision and steady leadership, Rice became a place where founders are taken seriously, ideas are rigorously supported, and entrepreneurship is embedded in the fabric of the university.”

One of Burke’s notable achievements at Rice is the creation of the Rice Business Plan Competition. During his tenure, the competition has grown from nine student teams competing for $10,000 into the world’s largest intercollegiate competition for student-led startups. Today, the annual competition welcomes 42 student-led startups that vie for more than $1 million in prizes.

Away from Rice, Burke has played a key role in cultivating entrepreneurship in the energy sector: He helped establish the Energy Tech Venture Forum along with Houston Energy and Climate Startup Week.

Furthermore, Burke co-founded the Texas University Network for Innovation and Entrepreneurship in 2008 to bolster the entrepreneurship programs at every university in Texas. In 2016, the Rice Alliance assumed leadership of the Global Consortium of Entrepreneurship Centers.

In 2023, Burke received the Trailblazer Award at the 2023 Houston Innovation Awards and was recognized by the Deshpande Foundation for his contributions to innovation and entrepreneurship in higher education.

“Working with an amazing team to build the entrepreneurial ecosystem at Rice, in Houston, and beyond has been the privilege of my career,” Burke said in the release. “It has been extremely gratifying to hear entrepreneurs say our efforts changed their lives, while bringing new innovations to market. The organization is well-positioned to help drive exponential growth across startups, investors, and the entrepreneurial ecosystem.”

Starting April 15, John “JR” Reale Jr. will serve as interim associate vice president at Rice and executive director of the Rice Alliance. He is managing director of the alliance. Reale is co-founder of the Station Houston startup hub and a startup investor. He was also recently named director for startups and investor engagement at the Ion.

“The Rice Alliance has always been about helping founders gain advantages to realize their visions,” Reale said. “Under Brad’s leadership, the Rice Alliance has become a globally recognized platform that is grounded in trust and drives transformational founder outcomes. My commitment is to honor what Brad has built and led while continuing to serve our team and community, deepen relationships and deliver impact.”

Burke joined the Houston Innovators Podcast back in 2022. Listen to the full interview here.

Houston team uses CPRIT funding to develop nanodrug for cancer immunotherapy

cancer research

With a relative five-year survival rate of 50 percent, pancreatic cancer is a diagnosis nobody wants. At 60 percent, the prognosis for lung cancer isn’t much rosier. That’s because both cancers contain regulatory B cells (Bregs), which block the body’s natural immunity, making it harder to fight the enemies within.

Newly popular immunotherapies in a category known as STING agonists may stimulate natural cancer defenses. However, they can also increase Bregs while simultaneously causing significant side effects. But Wei Gao, assistant professor of pharmacology at the University of Houston College of Pharmacy, may have a solution to that conundrum.

Gao and her team have developed Nano-273, a dual-function drug, packaged in an albumin-based particle, that boosts the immune system to help it better fight pancreatic and lung cancers. Gao’s lab recently received a $900,000 grant from the Cancer Prevention and Research Institute of Texas (CPRIT) to aid in fueling her research into the nanodrug.

“Nano-273 both activates STING and blocks PI3Kγ—a pathway that drives Breg expansion, while albumin nanoparticles help deliver the drug directly to immune cells, reducing unwanted side effects,” Gao said in a press release. “This approach reduces harmful Bregs while boosting immune cells that attack cancer, leading to stronger and more targeted anti-tumor responses.”

In studies using models of both pancreatic and lung cancers, Nano-273 has shown great promise with low toxicity. Its best results thus far have involved using the drug in combination with immunotherapy or chemotherapy.

With the CPRIT funds, Gao and her team will be able to charge closer to clinical use with a series of important steps. Those include continuing to test Nano-273 alongside other drugs, including immune checkpoint inhibitors. Safety studies will follow, but with future patients in mind, Gao will also work toward improving her drug’s production, making sure that it’s safe and high-quality every time, so that it is eventually ready for trials.

Gao added: “If successful, this project could lead to a new type of immunotherapy that offers lasting tumor control and improved survival for patients with pancreatic and lung cancers, two diseases that urgently need better treatments."