Ax-1 is headed back to Earth after 12 days of research on the ISS. Photo courtesy of SpaceX

Editor's note: Undocking was delayed again on April 19, and a new timeline has not been announced. The original story is below.

After spending 12 days in space, a historic commercial space mission will splash back down on Earth this week.

Houston-based Axiom Space’s first mission Axiom mission 1 (Ax-1), which took off April 8 and connected to the International Space Station, has announced its plans for undocking and splashdown.

After some initial bad weather postponed the process, the four-member private astronaut crew now is aiming to undock at about 9 pm tonight, April 19, and then land off the coast of Florida at around 2:24 pm tomorrow, April 20. Just like launch, the coverage of both events will be available at Axiom's website.

The mission on SpaceX’s spacecraft sent four multinational private astronauts — Commander Michael López-Alegría, Pilot Larry Connor, Mission Specialist Eytan Stibbe, and Mission Specialist Mark Pathy — to the ISS to conduct research and familiarize Axiom with launch, docking, and more.

Axiom Space, which reached $1 billion valuation and joined the Houston unicorn club last year after a $130 million investment round, is working on the first commercial space station to replace the ISS. The first launch of that mission is expected in late 2024. In the meantime, Axiom has a series of commercial launches to the existing station currently in orbit in order to prepare for development and orchestration of Axiom Station.

The Ax-1 mission, which has provided daily updates, has conducted over 20 research projects and even hit a few milestones, including:

  • The first-ever music duet performance in space — Commander López-Alegría and Neo-Classical Piano Prodigy BLKBOK made music and space history with their piano and keyboard duet
  • The Aging and Heart Health investigation, an experiment from the Mayo Clinic — a study that analyzes human cells for genetic markers of cellular aging and explores cardiac-like cells' adaptation to microgravity
  • Observation of Transient Luminous Events — Specialist Stibbe completed a space observation experiment and photographed a lightning storm over Darwin, Australia, to enhance understanding of the electrical processes in the atmosphere and to determine whether there’s a connection with climate change
  • Testing of the Holoportation system — Mission Specialist Pathy set up two-way AI technology that will allow the ability of future crew members to explore deep space with the ability to virtually bring friends, family, and physicians close with them so that they can get an on-Earth experience
  • Several outreach calls to Earth to STEM students from around the world — this included a call to children at Space Center Houston

Axiom shares more details on its mission research projects — which span technologies such as future space habitats, cancer research, and devices to purify air on space stations — online.

“As the first step on a path to building a diverse, thriving economy in low-Earth orbit, Axiom has partnered with leaders in academia and industry to bring new users and new investigations in research to the space station,” says Christian Maender, director of In-space Manufacturing and Research for Axiom Space, in a news release. “The collection of biological and technological tests during the Ax-1 mission represent a breadth of research that will inform everything from human health considerations to novel infrastructure and design for our future homes away from Earth, beginning with Axiom Station.”

The four-person crew spent 12 days on the ISS. Photo courtesy of NASA

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH receives $2.6M gift to support opioid addiction research and treatment

drug research

The estate of Dr. William A. Gibson has granted the University of Houston a $2.6 million gift to support and expand its opioid addiction research, including the development of a fentanyl vaccine that could block the drug's ability to enter the brain.

The gift builds upon a previous donation from the Gibson estate that honored the scientist’s late son Michael, who died from drug addiction in 2019. The original donation established the Michael C. Gibson Addiction Research Program in UH's department of psychology. The latest donation will establish the Michael Conner Gibson Endowed Professorship in Psychology and the Michael Conner Gibson Research Endowment in the College of Liberal Arts and Social Sciences.

“This incredibly generous gift will accelerate UH’s addiction research program and advance new approaches to treatment,” Daniel O’Connor, dean of the College of Liberal Arts and Social Sciences, said in a news release.

The Michael C. Gibson Addiction Research Program is led by UH professor of psychology Therese Kosten and Colin Haile, a founding member of the UH Drug Discovery Institute. Currently, the program produces high-profile drug research, including the fentanyl vaccine.

According to UH, the vaccine can eliminate the drug’s “high” and could have major implications for the nation’s opioid epidemic, as research reveals Opioid Use Disorder (OUD) is treatable.

The endowed professorship is combined with a one-to-one match from the Aspire Fund Challenge, a $50 million grant program established in 2019 by an anonymous donor. UH says the program has helped the university increase its number of endowed chairs and professorships, including this new position in the department of psychology.

“Our future discoveries will forever honor the memory of Michael Conner Gibson and the Gibson family,” O’Connor added in the release. “And I expect that the work supported by these endowments will eventually save many thousands of lives.”

CenterPoint and partners launch AI initiative to stabilize the power grid

AI infrastructure

Houston-based utility company CenterPoint Energy is one of the founding partners of a new AI infrastructure initiative called Chain Reaction.

Software companies NVIDIA and Palantir have joined CenterPoint in forming Chain Reaction, which is aimed at speeding up AI buildouts for energy producers and distributors, data centers and infrastructure builders. Among the initiative’s goals are to stabilize and expand the power grid to meet growing demand from data centers, and to design and develop large data centers that can support AI activity.

“The energy infrastructure buildout is the industrial challenge of our generation,” Tristan Gruska, Palantir’s head of energy and infrastructure, says in a news release. “But the software that the sector relies on was not built for this moment. We have spent years quietly deploying systems that keep power plants running and grids reliable. Chain Reaction is the result of building from the ground up for the demands of AI.”

CenterPoint serves about 7 million customers in Texas, Indiana, Minnesota and Ohio. After Hurricane Beryl struck Houston in July 2024, CenterPoint committed to building a resilient power grid for the region and chose Palantir as its “software backbone.”

“Never before have technology and energy been so intertwined in determining the future course of American innovation, commercial growth, and economic security,” Jason Wells, chairman, president and CEO of CenterPoint, added in the release.

In November, the utility company got the go-ahead from the Public Utility Commission of Texas for a $2.9 billion upgrade of its Houston-area power grid. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

A month earlier, CenterPoint launched a $65 billion, 10-year capital improvement plan to support rising demand for power across all of its service territories.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.