This week's roundup of Houston innovators includes Sean Kelly of Amperon, Amanda Burkhardt of Phiogen, and Mielad Ziaee of UH. Photos courtesy

Editor's note: Welcome to another Monday edition of Innovators to Know. Today I'm introducing you to three Houstonians to read up about — three individuals behind recent innovation and startup news stories in Houston as reported by InnovationMap. Learn more about them and their recent news below by clicking on each article.

Sean Kelly, CEO and co-founder of Amperon

Amperon CEO Sean Kelly joins the Houston Innovators Podcast to share his company's growth and expansion plans. Photo via LinkedIn

The technology that Amperon provides its customers — a comprehensive, AI-backed data analytics platform — is majorly key to the energy industry and the transition of the sector. But CEO Sean Kelly says he doesn't run his business like an energy company.

Kelly explains on the Houston Innovators Podcast that he chooses to run Amperon as a tech company when it comes to hiring and scaling.

"There are a lot of energy companies that do tech — they'll hire a large IT department, they'll outsource a bunch of things, and they'll try to undergo a product themselves because they think it should be IP," he says on the show. "A tech company means that at your core, you're trying to build the best and brightest technology." Continue reading.

Amanda Burkhardt, CEO of Phiogen

Spun out of Baylor College of Medicine, Phiogen was selected out of 670 companies to pitch at SXSW earlier this month. Photo via LinkedIn

A new Houston biotech company won a special award at the 16th Annual SXSW Pitch Award Ceremony earlier this month.

Phiogen, one of 45 companies that competed in nine categories, was the winner for best inclusivity, much to the surprise of the company’s CEO, Amanda Burkhardt.

Burkhardt tells InnovationMap that while she wanted to represent the heavily female patient population that Phiogen seeks to treat, really she just hires the most skilled scientists.

“The best talent was the folks that we have and it ends up being we have three green card holders on our team. As far as ethnicities, we have on our team we have Indian, African-American, Korean, Chinese Pakistani, Moroccan and Hispanic people and that just kind of just makes up the people who helped us on a day-to-day basis,” she explains. Continue reading.

Mielad Ziaee, 2023-2024 All of Us Research Scholar

Mielad Ziaee, a 20-year-old student at the University of Houston, was tapped for a unique National Institutes of Health program. Photo via UH.edu

A Houston-area undergraduate student has been tapped for a prestigious national program that pairs early-career investigators with health research professionals.

Mielad Ziaee was selected for the National Institutes of Health’s 2023-2024 All of Us Research Scholar Program, which connects young innovators with experts "working to advance the field of precision medicine," according to a statement from UH. Ziaee – a 20-year-old majoring in psychology and minoring in biology, medicine and society who plans to graduate in 2025 — plans to research how genomics, or the studying of a person's DNA, can be used to impact health.

“I’ll be one of the ones that define what this field of personalized, precision medicine will look like in the future,” Ziaee said in a statement. “It’s exciting and it’s a big responsibility that will involve engaging diverse populations and stakeholders from different systems – from researchers to health care providers to policymakers.” Continue reading.

Mielad Ziaee, a 20-year-old student at the University of Houston, was tapped for a unique National Institutes of Health program. Photo via UH.edu

Houston student selected for prestigious health care research program

bright future

A Houston-area undergraduate student has been tapped for a prestigious national program that pairs early-career investigators with health research professionals.

Mielad Ziaee was selected for the National Institutes of Health’s 2023-2024 All of Us Research Scholar Program, which connects young innovators with experts "working to advance the field of precision medicine," according to a statement from UH. Ziaee – a 20-year-old majoring in psychology and minoring in biology, medicine and society who plans to graduate in 2025 — plans to research how genomics, or the studying of a person's DNA, can be used to impact health.

“I’ll be one of the ones that define what this field of personalized, precision medicine will look like in the future,” Ziaee said in a statement. “It’s exciting and it’s a big responsibility that will involve engaging diverse populations and stakeholders from different systems – from researchers to health care providers to policymakers.”

Ziaee aims to become a physician who can use an understanding of social health conditions to guide his clinical practice. At a young age, he was inspired to go into the field by his family's own experience.

According to UH, Ziaee is the oldest child of Iranian American immigrants. He saw firsthand the challenges of how language and cultural barriers can impact patients' access to and level of care.

“I think a lot of people define health as purely biological, but a lot of other factors influence our well-being, such as mental health, financial health, and even access to good food, medical care and the internet,” he said in a statement. “I am interested in seeing the relationship among all these things and how they impact our health. So far, a lot of health policies and systems have not really looked beyond biology.”

"I want everyone to have an equal chance to access health care and take charge of their well-being. We need to have the systems in place that let people do that,” he added.

Ziaee is already on his way to helping Houston-based and national health systems and organizations make headway in this area.

He was named as a student regent on the UH System Board of Regents last year, sits on the board of the Houston chapter of the American Red Cross, and is an Albert Schweitzer Fellow.

Last year he was a Centers for Disease Control and Prevention John R. Lewis scholar, for which he presented his research project about predicting food insecurity in pediatric clinical settings and recommendations to improve the assessment based off his summer research with the Johns Hopkins University School of Medicine and the Kennedy Krieger Institute.

Prior to this, he completed a 10-week guided research experience using data visualization and predictive modeling techniques to assess food insecurity in the Third Ward.

“I just took every opportunity that came to me,” Ziaee said. “All my experiences connect with my central desire to increase health access and improve health care. I am very intentional about connecting the dots to my passion.”

Earlier this year, three UH student researchers were named among 16 other early-stage research projects at U.S. colleges and universities to receive a total of $17.4 million from the DOE's Office of Fossil Energy and Carbon Management (FECM). The projects were each awarded between about $750,000 to up to $1.5 million.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Elon Musk vows to launch solar-powered data centers in space

To Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”

Johnson Space Center and UT partner to expand research, workforce development

onward and upward

NASA’s Johnson Space Center in Houston has forged a partnership with the University of Texas System to expand collaboration on research, workforce development and education that supports space exploration and national security.

“It’s an exciting time for the UT System and NASA to come together in new ways because Texas is at the epicenter of America’s space future. It’s an area where America is dominant, and we are committed as a university system to maintaining and growing that dominance,” Dr. John Zerwas, chancellor of the UT System, said in a news release.

Vanessa Wyche, director of Johnson Space Center, added that the partnership with the UT System “will enable us to meet our nation’s exploration goals and advance the future of space exploration.”

The news release noted that UT Health Houston and the UT Medical Branch in Galveston already collaborate with NASA. The UT Medical Branch’s aerospace medicine residency program and UT Health Houston’s space medicine program train NASA astronauts.

“We’re living through a unique moment where aerospace innovation, national security, economic transformation, and scientific discovery are converging like never before in Texas," Zerwas said. “UT institutions are uniquely positioned to partner with NASA in building a stronger and safer Texas.”

Zerwas became chancellor of the UT System in 2025. He joined the system in 2019 as executive vice chancellor for health affairs. Zerwas represented northwestern Ford Bend County in the Texas House from 2007 to 2019.

In 1996, he co-founded a Houston-area medical practice that became part of US Anesthesia Partners in 2012. He remained active in the practice until joining the UT System. Zerwas was chief medical officer of the Memorial Hermann Hospital System from 2003 to 2008 and was its chief physician integration officer until 2009.

Zerwas, a 1973 graduate of the Houston area’s Bellaire High School, is an alumnus of the University of Houston and Baylor College of Medicine.