Houston-based VoltaGrid provides small-scale, self-contained microgrids that can operate independently of major power grids or in tandem with other microgrids. Photo via voltagrid.com

VoltaGrid, a Bellaire-based startup that specializes in distributed power generation via microgrids, has hauled in $150 million in equity funding.

Founded in 2020, VoltaGrid provides small-scale, self-contained microgrids that can operate independently of major power grids or in tandem with other microgrids. VoltaGrid’s product consists of natural gas engines, portable energy storage, natural gas processing and grid power connectivity.

Investors in the $150 million round include the Canada Pension Plan Investment Board (CPP Investments), Longbow Capital, Walter Ventures, and Pilot Company (operator of more than 800 retail and fueling locations in the U.S. and Canada). The $150 million round comes less than a year after VoltaGrid announced a $100 million round featuring the same investors.

VoltaGrid says it will spend the fresh cash to grow its power generation portfolio, along with its low-carbon fuel program in partnership with Pilot. The low-carbon platform features hydrogen and compressed natural gas.

“VoltaGrid continues to set new milestones across multiple sectors and business lines as we execute on our proven strategy with key partners,” Nathan Ough, president and CEO of VoltaGrid, says in a news release.

“Our strategy to establish one of the largest asset bases of portable generation, uniquely paired with our low-carbon fueling solutions, has significantly decreased the complexity for our partners to electrify their operations. I am thankful to our team members for the tremendous amount of work that has been contributed to create one of the largest portfolios of contracted low carbon fuels in the industry.”

Ed Pettitt and Paresh Patel join the Houston Innovators Podcast to discuss InnoGrid's potential impact on equitable power. Photos courtesy of InnoGrid

Houston founders aim to provide equity through energy resiliency

Houston innovators podcast episode 143

As temperatures climb and devastating natural disasters continue to test the power grid, two Houston innovators have a solution: Smart microgrids.

"Microgrids have been around for a very long time," Paresh Patel, co-founder of InnoGrid, says on the Houston Innovators Podcast. "We're primed here in Houston and in Texas to really see microgrids go mainstream. ... People want to see that they have control and are in charge of their own power."

Patel co-founded InnoGrid with Ed Pettitt and a few other collaborators following the 2020 Houston Climathon. The social enterprise is working to establish community microgrids in lower income areas — neighborhoods that are most at risk of devastating power outages.

"We want to convert the commercial microgrid model for low and moderate income and undresourced residential communities," Patel explains.

And there's never been a better time to shine a spotlight on microgrids as a solution to unreliable power systems, Pettitt says.

"We're dealing with massive inflation — costs are going up especially in food and energy," he explains on the show. "Even prior to this time of inflation, electricity prices in the US were expected to increase across the board. Hundreds of thousands of people right now today are being pushed below the poverty line because of increased energy costs. We need to be more creative in how we upgrade our infrastructure."

And the current grid system is well overdue for an upgrade. The microgrid system fits right in with the shared economy we live in today, Patel says, and it allows for more generation of energy that is decentralized, digitalized, decarbonized, and democratized — the four Ds as he says.

"When you consider our current grid system, it is a vestige of the industrial revolution — it's 140 years old. That business model is ripe for innovation," Patel says.

"We need to accelerate deployment of microgrid models," he continues. "I don't think we can afford to update our current grid system — it'll cost $2 trillion."

Most importantly, these microgrids need to be implemented in an equitable way, the founders say, and InnoGrid has its eyes on one Houston area in particular. The Innovation Corridor, which spans from the Texas Medical Center to Downtown Houston, would be the ideal region to deploy the technology.

"If you look at the innovation corridor, it forms the spine of the city. You have so many important municipal buildings, first-responding organizations, and a large amount of affordable housing in the area. There's critical resources here that we want to make sure the lights stay on in power disasters," Pettit says. "One of the things we believe at InnoGrid is that where you live shouldn't determine whether or not you survive a national weather event. We want to make sure we provide energy stability in the communities that need it most."

To make this dream into a reality, InnoGrid needs the right partnerships and support in the area — and the founders have made progress. InnoGrid recently participated in the Ion Smart and Resilient Cities Accelerator and has a relationship with Greentown Houston across the street.

Eventually, as Pettit says, InnoGrid wants to help lead Houston to becoming a hub for microgrid innovation.

"We're looking at other cities — like Chicago and Boston — and how they've deployed their microgrids and making sure we're bringing those best practices in Houston," Pettit says. "Eventually we want to be the leader in developing these microgrid best practices as the energy capital of the world."

Patel and Pettitt share more about InnoGrid and microgrid technology on the podcast. Listen to the interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston neighbor named richest small town in Texas for 2025

Ranking It

Affluent Houston neighbor Bellaire is cashing in as the richest small town in Texas for 2025, according to new study from GoBankingRates.

The report, "The Richest Small Town in Every State," used data from the U.S. Census Bureau's American Community Survey to determine the 50 richest small towns in America based on their median household income.

Of course, Houstonians realize that describing Bellaire as a "small town" is a bit of misnomer. Located less than 10 miles from downtown and fully surrounded by the City of Houston, Bellaire is a wealthy enclave that boasts a population of just over 17,000 residents. These affluent citizens earn a median $236,311 in income every year, which GoBankingRates says is the 11th highest household median income out of all 50 cities included in the report.

The average home in this city is worth over $1.12 million, but Bellaire's lavish residential reputation often attracts properties with multimillion-dollar price tags.

Bellaire also earned a shining 81 livability score for its top quality schools, health and safety, commute times, and more. The livability index, provided by Toronto, Canada-based data analytics and real estate platform AreaVibes, said Bellaire has "an abundance of exceptional local amenities."

"Among these are conveniently located grocery stores, charming coffee shops, diverse dining options and plenty of spacious parks," AreaVibes said. "These local amenities contribute significantly to its overall appeal, ensuring that [residents'] daily needs are met and offering ample opportunities for leisure and recreation."

Earlier in 2025, GoBankingRates ranked Bellaire as the No. 23 wealthiest suburb in America, and it's no stranger to being named on similar lists comparing the richest American cities.

---

This article originally appeared on CultureMap.com.

How a Houston startup is taking on corrosion, a costly climate threat

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.

This article originally appeared on our sister site, EnergyCapitalHTX.com.

These 50+ Houston scientists rank among world’s most cited

science stars

Fifty-one scientists and professors from Houston-area universities and institutions were named among the most cited in the world for their research in medicine, materials sciences and an array of other fields.

The Clarivate Highly Cited Researchers considers researchers who have authored multiple "Highly Cited Papers" that rank in the top 1percent by citations for their fields in the Web of Science Core Collection. The final list is then determined by other quantitative and qualitative measures by Clarivate's judges to recognize "researchers whose exceptional and community-wide contributions shape the future of science, technology and academia globally."

This year, 6,868 individual researchers from 60 different countries were named to the list. About 38 percent of the researchers are based in the U.S., with China following in second place at about 20 percent.

However, the Chinese Academy of Sciences brought in the most entries, with 258 researchers recognized. Harvard University with 170 researchers and Stanford University with 141 rounded out the top 3.

Looking more locally, the University of Texas at Austin landed among the top 50 institutions for the first time this year, tying for 46th place with the Mayo Clinic and University of Minnesota Twin Cities, each with 27 researchers recognized.

Houston once again had a strong showing on the list, with MD Anderson leading the pack. Below is a list of the Houston-area highly cited researchers and their fields.

UT MD Anderson Cancer Center

  • Ajani Jaffer (Cross-Field)
  • James P. Allison (Cross-Field)
  • Maria E. Cabanillas (Cross-Field)
  • Boyi Gan (Molecular Biology and Genetics)
  • Maura L. Gillison (Cross-Field)
  • David Hong (Cross-Field)
  • Scott E. Kopetz (Clinical Medicine)
  • Pranavi Koppula (Cross-Field)
  • Guang Lei (Cross-Field)
  • Sattva S. Neelapu (Cross-Field)
  • Padmanee Sharma (Molecular Biology and Genetics)
  • Vivek Subbiah (Clinical Medicine)
  • Jennifer A. Wargo (Molecular Biology and Genetics)
  • William G. Wierda (Clinical Medicine)
  • Ignacio I. Wistuba (Clinical Medicine)
  • Yilei Zhang (Cross-Field)
  • Li Zhuang (Cross-Field)

Rice University

  • Pulickel M. Ajayan (Materials Science)
  • Pedro J. J. Alvarez (Environment and Ecology)
  • Neva C. Durand (Cross-Field)
  • Menachem Elimelech (Chemistry and Environment and Ecology)
  • Zhiwei Fang (Cross-Field)
  • Naomi J. Halas (Cross-Field)
  • Jun Lou (Materials Science)
  • Aditya D. Mohite (Cross-Field)
  • Peter Nordlander (Cross-Field)
  • Andreas S. Tolias (Cross-Field)
  • James M. Tour (Cross-Field)
  • Robert Vajtai (Cross-Field)
  • Haotian Wang (Chemistry and Materials Science)
  • Zhen-Yu Wu (Cross-Field)

Baylor College of Medicine

  • Nadim J. Ajami (Cross-Field)
  • Biykem Bozkurt (Clinical Medicine)
  • Hashem B. El-Serag (Clinical Medicine)
  • Matthew J. Ellis (Cross-Field)
  • Richard A. Gibbs (Cross-Field)
  • Peter H. Jones (Pharmacology and Toxicology)
  • Sanjay J. Mathew (Cross-Field)
  • Joseph F. Petrosino (Cross-Field)
  • Fritz J. Sedlazeck (Biology and Biochemistry)
  • James Versalovic (Cross-Field)

University of Houston

  • Zhifeng Ren (Cross-Field)
  • Yan Yao (Cross-Field)
  • Yufeng Zhao (Cross-Field)
  • UT Health Science Center Houston
  • Hongfang Liu (Cross-Field)
  • Louise D. McCullough (Cross-Field)
  • Claudio Soto (Cross-Field)

UTMB Galveston

  • Erez Lieberman Aiden (Cross-Field)
  • Pei-Yong Shi (Cross-Field)

Houston Methodist

  • Eamonn M. M. Quigley (Cross-Field)