Houston-based VoltaGrid provides small-scale, self-contained microgrids that can operate independently of major power grids or in tandem with other microgrids. Photo via voltagrid.com

VoltaGrid, a Bellaire-based startup that specializes in distributed power generation via microgrids, has hauled in $150 million in equity funding.

Founded in 2020, VoltaGrid provides small-scale, self-contained microgrids that can operate independently of major power grids or in tandem with other microgrids. VoltaGrid’s product consists of natural gas engines, portable energy storage, natural gas processing and grid power connectivity.

Investors in the $150 million round include the Canada Pension Plan Investment Board (CPP Investments), Longbow Capital, Walter Ventures, and Pilot Company (operator of more than 800 retail and fueling locations in the U.S. and Canada). The $150 million round comes less than a year after VoltaGrid announced a $100 million round featuring the same investors.

VoltaGrid says it will spend the fresh cash to grow its power generation portfolio, along with its low-carbon fuel program in partnership with Pilot. The low-carbon platform features hydrogen and compressed natural gas.

“VoltaGrid continues to set new milestones across multiple sectors and business lines as we execute on our proven strategy with key partners,” Nathan Ough, president and CEO of VoltaGrid, says in a news release.

“Our strategy to establish one of the largest asset bases of portable generation, uniquely paired with our low-carbon fueling solutions, has significantly decreased the complexity for our partners to electrify their operations. I am thankful to our team members for the tremendous amount of work that has been contributed to create one of the largest portfolios of contracted low carbon fuels in the industry.”

Ed Pettitt and Paresh Patel join the Houston Innovators Podcast to discuss InnoGrid's potential impact on equitable power. Photos courtesy of InnoGrid

Houston founders aim to provide equity through energy resiliency

Houston innovators podcast episode 143

As temperatures climb and devastating natural disasters continue to test the power grid, two Houston innovators have a solution: Smart microgrids.

"Microgrids have been around for a very long time," Paresh Patel, co-founder of InnoGrid, says on the Houston Innovators Podcast. "We're primed here in Houston and in Texas to really see microgrids go mainstream. ... People want to see that they have control and are in charge of their own power."

Patel co-founded InnoGrid with Ed Pettitt and a few other collaborators following the 2020 Houston Climathon. The social enterprise is working to establish community microgrids in lower income areas — neighborhoods that are most at risk of devastating power outages.

"We want to convert the commercial microgrid model for low and moderate income and undresourced residential communities," Patel explains.

And there's never been a better time to shine a spotlight on microgrids as a solution to unreliable power systems, Pettitt says.

"We're dealing with massive inflation — costs are going up especially in food and energy," he explains on the show. "Even prior to this time of inflation, electricity prices in the US were expected to increase across the board. Hundreds of thousands of people right now today are being pushed below the poverty line because of increased energy costs. We need to be more creative in how we upgrade our infrastructure."

And the current grid system is well overdue for an upgrade. The microgrid system fits right in with the shared economy we live in today, Patel says, and it allows for more generation of energy that is decentralized, digitalized, decarbonized, and democratized — the four Ds as he says.

"When you consider our current grid system, it is a vestige of the industrial revolution — it's 140 years old. That business model is ripe for innovation," Patel says.

"We need to accelerate deployment of microgrid models," he continues. "I don't think we can afford to update our current grid system — it'll cost $2 trillion."

Most importantly, these microgrids need to be implemented in an equitable way, the founders say, and InnoGrid has its eyes on one Houston area in particular. The Innovation Corridor, which spans from the Texas Medical Center to Downtown Houston, would be the ideal region to deploy the technology.

"If you look at the innovation corridor, it forms the spine of the city. You have so many important municipal buildings, first-responding organizations, and a large amount of affordable housing in the area. There's critical resources here that we want to make sure the lights stay on in power disasters," Pettit says. "One of the things we believe at InnoGrid is that where you live shouldn't determine whether or not you survive a national weather event. We want to make sure we provide energy stability in the communities that need it most."

To make this dream into a reality, InnoGrid needs the right partnerships and support in the area — and the founders have made progress. InnoGrid recently participated in the Ion Smart and Resilient Cities Accelerator and has a relationship with Greentown Houston across the street.

Eventually, as Pettit says, InnoGrid wants to help lead Houston to becoming a hub for microgrid innovation.

"We're looking at other cities — like Chicago and Boston — and how they've deployed their microgrids and making sure we're bringing those best practices in Houston," Pettit says. "Eventually we want to be the leader in developing these microgrid best practices as the energy capital of the world."

Patel and Pettitt share more about InnoGrid and microgrid technology on the podcast. Listen to the interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.