Prabhdeep Singh Sekhon, CEO of Gold H2, joins the Houston Innovators Podcast. Photo courtesy of Gold H2

Using microbes to sustainably unlock low-cost hydrogen sounds like the work of science fiction, but one Houston company is doing just that.

Gold H2, a spin-off company from Cemvita, has bioengineered subsurface microbes to use in wells to consume carbon and generate clean hydrogen. The technology was piloted two years ago by Cemvita, and now, as its own company with a new CEO, it's safe to say Gold H2's on its way.

"First of all, that was groundbreaking," Prabhdeep Singh Sekhon, CEO of Gold H2, says of the 2022 pilot in the Permian Basin, "to be able to use bugs to produce hydrogen within a couple of days."

"2024 is supposed to be the year where Gold H2 takes off," Sekhon, who joined the company in April, tells the Houston Innovators Podcast. "It was one of those opportunities that I couldn't turn down. I had been following the company. I thought, 'here is this innovative tech that's on the verge of providing a ground-breaking solution to the energy transition — what better time to join the team.'"

Sekhon shares on the show how his previous roles at NextEra Energy Resources and Hess have prepared him for Gold H2. Specifically, as a leader on NextEra’s strategy and business development team, he says he was tasked with figuring out what the energy industry looks like in the next five, 10, and 20 years.

"Green hydrogen was a huge buzz, but one of the things I realized when I started looking at green hydrogen was that it's very expensive," Sekhon says. "I wanted to look at alternatives."

This journey led him to what Cemvita was doing with gold hydrogen, Sekhon says, explaining that the ability to use biotechnology to provide a new revenue stream from the mostly used up wells struck him as something with major potential.

"The idea of repurposing existing oil and gas assets to become hydrogen assets, leveraging current infrastructure to drive down overall deliver costs — to me I thought, 'wow, if they can make this works, that's brilliant,'" he says.

Now, as CEO, Sekhon gets to lead the company toward these goals, which include expanding internationally. He explains on the show that Gold H2 is interested in expanding to any part of the world where there's interest in implementing their biotech. In order to support the growth, Sekhon says they are looking to raise funding this year with plans for an additional round, if needed, in 2025.

"When we compare our tech to the rest of the stack, I think we blow the competition out of the water," Sekhon says, explaining that Gold H2's approach to gold hydrogen development is novel when you look at emerging technology in the space. "We're using a biological process — cheap bugs that eat oil for a living."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University makes top 5 lists of best biz schools in the country

top ranking

MBA programs at Rice University’s Jones Graduate School of Business have landed two top five rankings in The Princeton Review’s annual list of the country’s best business schools.

Rice earned a No. 4 ranking for its online MBA program and a No. 5 ranking for its MBA program in finance.

“These rankings are indicative of the high-quality education offered through all of our MBA programs. Students studying finance at Rice … are taught by faculty whose research and expertise enhances core classes and hard skills, so students are not just prepared to be successful in their careers, but they are also prepared to think critically about their roles and to lead in their industry,” Peter Rodriguez, dean of the Jones Graduate School of Business, says in a news release.

“These rankings are also indicative of our broader approach: offering students flexibility in their pursuit of an MBA, while retaining the experience of studying with world-class faculty — no matter what program they choose,” Rodriguez adds.

Rice also achieved high rankings in two other MBA categories: No. 8 for “greatest resources for women” and No. 10 for “greatest resources for minority students.”

The Princeton Review’s 2024 business school rankings are based on data from surveys of administrators at more than 400 business schools as well as surveys of 32,200 students enrolled in the schools’ MBA programs.

“The schools that made our list for 2024 all have impressive individual distinctions,” Rob Franek, The Princeton Review’s editor-in-chief, says in a news release. “What they share are three characteristics that broadly informed our criteria for these rankings: outstanding academics, robust experiential learning components and excellent career services.”

Rice also ranks as the top school for graduate entrepreneurship programs, which Princeton Review released last fall. The University of Houston ranks as No. 1 for undergraduate entrepreneurship programs.

Houston agriculture robotics co. raises $21.5M series A to grow climatetech solution

seeing green

A Houston energy tech startup has raised a $21.5 million series a round of funding to support the advancement of its automated technology that converts field wastes into stable carbon.

Applied Carbon, previously known as Climate Robotics, announced that its fresh round of funding was led by TO VC, with participation from Congruent Ventures, Grantham Foundation, Microsoft Climate Innovation Fund, S2G Ventures, Overture.vc, Wireframe Ventures, Autodesk Foundation, Anglo American, Susquehanna Foundation, US Endowment for Forestry and Communities, TELUS Pollinator Fund for Good, and Elemental Excelerator.

The series A funding will support the deployment of its biochar machines across Texas, Oklahoma, Arkansas, and Louisiana.

"Multiple independent studies indicate that converting crop waste into biochar has the potential to remove gigatons of CO2 from the atmosphere each year, while creating trillions of dollars in value for the world's farmers," Jason Aramburu, co-founder and CEO of Applied Carbon, says in a news release. "However, there is no commercially available technology to convert these wastes at low cost.

"Applied Carbon's patented in-field biochar production system is the first solution that can convert crop waste into biochar at a scale and a cost that makes sense for broad acre farming," he continues.

Applied Carbon rebranded in June shortly after being named a top 20 finalist in XPRIZE's four-year, $100 million global Carbon Removal Competition. The company also was named a semi-finalist and awarded $50,000 from the Department of Energy's Carbon Dioxide Removal Purchase Pilot Prize program in May.

"Up to one-third of excess CO2 that has accumulated in the atmosphere since the start of human civilization has come from humans disturbing soil through agriculture," Joshua Phitoussi, co-founder and managing partner at TO VC, adds. "To reach our net-zero objectives, we need to put that carbon back where it belongs.

"Biochar is unique in its potential to do so at a permanence and price point that are conducive to mass-scale adoption of carbon dioxide removal solutions, while also leaving farmers and consumers better off thanks to better soil health and nutrition," he continues. "Thanks to its technology and business model, Applied Carbon is the only company that turns that potential into reality."

The company's robotic technology works in field, picking up agricultural crop residue following harvesting and converts it into biochar in a single pass. The benefits included increasing soil health, improving agronomic productivity, and reducing lime and fertilizer requirements, while also providing a carbon removal and storage solution.

"We've been looking at the biochar sector for over a decade and Applied Carbon's in-field proposition is incredibly compelling," adds Joshua Posamentier, co-founder and managing partner of Congruent Ventures. "The two most exciting things about this approach are that it profitably swings the agricultural sector from carbon positive to carbon negative and that it can get to world-scale impact, on a meaningful timeline, while saving farmers money."

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a Houston chemist, a cleaning product founder, and a UH researcher.


James Tour, chemist at Rice University

The four-year agreement will support the team’s ongoing work on removing PFAS from soil. Photo via Rice University

A Rice University chemist James Tour has secured a new $12 million cooperative agreement with the U.S. Army Engineer Research and Development Center on the team’s work to efficiently remove pollutants from soil.

The four-year agreement will support the team’s ongoing work on removing per- and polyfluoroalkyl substances (PFAS) from contaminated soil through its rapid electrothermal mineralization (REM) process, according to a statement from Rice.

“This is a substantial improvement over previous methods, which often suffer from high energy and water consumption, limited efficiency and often require the soil to be removed,” Tour says. Read more.

Kristy Phillips, founder and CEO of Clean Habits

What started as a way to bring natural cleaning products in from overseas has turned into a promising application for more sustainable agriculture solutions. Photo via LinkedIn

When something is declared clean, one question invariably springs to mind: just how clean is clean?

Then it is, “What metrics decide what’s clean and what’s not?”

To answer those questions, one must abandon the subjective and delve into the scientific — and that’s where Clean Habits come in. The company has science on its side with Synbio, a patented cleaning formula that combines a unique blend of prebiotics and probiotics for their signature five-day clean.

“Actually, we are a synbiotic, which is a prebiotic and a probiotic fused together,” says Kristy Phillips, founder and CEO of Clean Habits. “And that's what gives us the five-day clean, and we also have the longest shelf life — three years — of any probiotic on the market.” Read more.

Jiming Bao, professor at University of Houston

Th innovative method involves techniques that will be used to measure and visualize temperature distributions without direct contact with the subject being photographed. Photo via UH.edu

A University of Houston professor of electrical and computer engineering, Jiming Bao, is improving thermal imaging and infrared thermography with a new method to measure the continuous spectrum of light.

His innovative method involves techniques that will be used to measure and visualize temperature distributions without direct contact with the subject being photographed, according to the university. The challenges generally faced by conventional thermal imaging is addressed, as the new study hopes to eliminate temperature dependence, and wavelength.

“We designed a technique using a near-infrared spectrometer to measure the continuous spectrum and fit it using the ideal blackbody radiation formula,” Bao tells the journal Device. “This technique includes a simple calibration step to eliminate temperature- and wavelength-dependent emissivity.” Read more.